Methods Inf Med 2011; 50(01): 96-99
DOI: 10.1055/s-0038-1625346
Letter to the Editor
Schattauer GmbH

Discussion of “Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix” – Continued

J. Shults
1   Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
20. Januar 2018 (online)

 

 
  • References

  • 1 Ziegler A, Vens M. Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix. Methods Inf Med 2010; 49 (05) 421-425.
  • 2 Breitung J, Chaganty NR, Daniel RM, Kenward MG, Lechner M, Martus P, Sabo RT, Wang Y-G, Zorn C. Discussion of “Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix”. Methods Inf Me 2010; 49 (05) 426-432.
  • 3 Molenberghs G. Editorial: Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix‘. Methods Inf Med 2010; 49 (05) 419-420.
  • 4 Prentice RL. Correlated Binary Regression with Covariates Specific to Each Binary Observation. Biometrics 1988; 44 (04) 1033-1048.
  • 5 Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe J, Ten-Have T. A Comparison of Several Approaches for Choosing Between Working Correlation Structures in Generalized Estimating Equation Analysis of Longitudinal Binary Data. Statistics in Medicine 2009; 28 (08) 2338-2355.
  • 6 Wang YG, Carey VJ. Working Correlation Misspecification, Estimation and Covariate Design: Implications for Generalized Estimating Equations Performance. Biometrika 2003; 90 (01) 29-41.
  • 7 Shults J, Sun W, Tu X, Amsterdam J. On the Violation of Bounds for the Correlation in Generalized Estimating Equation Analyses of Binary Data from Longitudinal Trials. UPenn Biostatistics Working Papers. Working Paper 8. 2006 http://biostats.bepress.com/upennbiostat/papers/art8
  • 8 Kim H, Shults J. %QLS SAS Macro: a SAS Macro for Analysis of Correlated Data Using Quasi-Least Squares. Journal of Statistical Software 2010; 35 (02) 1-21.
  • 9 Hilbe J. Logistic Regression Models. Boca Raton, Florida: Chapman & Hall/CRC Press; 2009
  • 10 Kim H, Hilbe JM, Shults J. On the Designation of the Patterned Associations for Longitudinal Bernoulli Data: Weight Matrix versus True Correlation Structure?. UPenn Biostatistics Working Papers. Working Paper 26. 2008; http://biostats.bepress.com/upennbiostat/papers/art26
  • 11 Chaganty NR, Joe H. Range of Correlation Matrices for Dependent Bernoulli Random Variables. Biometrika 2006; 93 (01) 197-206.
  • 12 Molenberghs G, Kenward MG. Semi-parametric Marginal Models for Hierarchical Data and their Corresponding Full Models. Computational Statistics & Data Analysis 2010; 54 (02) 585-597.
  • 13 Rochon J. Application of GEE Procedures for Sample Size Calculations in Repeated Measures Experiments. Statistics in Medicine 1998; 17 (14) 1643-1658.
  • 14 Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data. Oxford, UK: Oxford University Press; 2002
  • 15 Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. New York: Springer; 2005
  • 16 Shults J, Ratcliffe SJ, Leonard M. Improved Generalized Estimating Equation Analysis via xtqls for Quasi-Least Squares in Stata. The Stata Journal 2007; 7 (02) 147-166.