Subscribe to RSS
DOI: 10.1055/s-0038-1625962
Brain Tumor Heterogeneity
Heterogeneidade dos tumores cerebraisAbstract
Tumor heterogeneity is the concept that different tumor cells provide distinct biomorphological lesions, gene expressions, proliferation, microenvironment and graduated capacity of metastatic lesions. Brain tumor heterogeneity has been recently discussed about the interesting interaction of chronic inflammation, microenvironment, epigenetics and glioma steam cells. Brain tumors remain a challenge with regards to medication and disease, due to the lack of treatment options and unsatisfactory results. These results might be the result of the brain tumor heterogeneity and its multiple resistance mechanisms to chemo and radiotherapy.
Resumo
Heterogeneidade tumoral significa que diferentes células tumorais levam a lesões morfológicas e fenotípicas distintas, com diferentes morfologias celulares, expressão gênica, metabolismo, microambiente, proliferação e possibilidade de lesões metastáticas. A heterogeneidade dos tumores cerebrais malignos tem sido o foco essencial de pesquisas recentes devido às interações notáveis entre genética, epigenética, microambiente e células-tronco glioma, todas mediadas por inflamação crônica. Tumores cerebrais ainda são um desafio no que tange a medicação e doença, podendo, com a carência de opções terapêuticas aliada a resultados insatisfatórios, ocorrer devido à heterogeneidade do tumor e seus múltiplos mecanismos de resistência à quimio e radioterapia. Foi realizada uma revisão da literatura na base de dados PubMed usando os termos: brain tumor, heterogeneity, epigenetic, microenvironment, e glioma stem cells.
Keywords
brain tumor - tumor heterogeneity - glioma stem cell - genetics - epigenetics - microenvironmentPalavras-chave
tumor cerebral - heterogeneidade tumoral - células-tronco glioma - genética - epigenética - microambientePublication History
Received: 22 October 2017
Accepted: 18 December 2017
Article published online:
13 March 2018
© 2018. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
- 2 Manoranjan B, Venugopal C, McFarlane N. et al. Medulloblastoma stem cells: modeling tumor heterogeneity. Cancer Lett 2013; 338 (01) 23-31
- 3 Kool M, Korshunov A, Remke M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012; 123 (04) 473-484
- 4 Taylor MD, Northcott PA, Korshunov A. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123 (04) 465-472
- 5 Schonberg DL, Lubelski D, Miller TE, Rich JN. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med 2014; 39: 82-101
- 6 Bao S, Wu Q, Sathornsumetee S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66 (16) 7843-7848
- 7 Bao S, Wu Q, McLendon RE. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444 (7120): 756-760
- 8 Singh SK, Hawkins C, Clarke ID. et al. Identification of human brain tumour initiating cells. Nature 2004; 432 (7015): 396-401
- 9 Ricci-Vitiani L, Pallini R, Biffoni M. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468 (7325): 824-828
- 10 Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2 (01) 38-47
- 11 Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129 (03) 465-472
- 12 Li Z, Bao S, Wu Q. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15 (06) 501-513
- 13 Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN. Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem 2009; 284 (25) 16705-16709
- 14 Sathornsumetee S, Cao Y, Marcello JE. et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 2008; 26 (02) 271-278
- 15 Fan X, Khaki L, Zhu TS. et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28 (01) 5-16
- 16 Wang J, Wakeman TP, Lathia JD. et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28 (01) 17-28
- 17 Wang R, Chadalavada K, Wilshire J. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468 (7325): 829-833
- 18 Cayuso J, Ulloa F, Cox B, Briscoe J, Martí E. The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development 2006; 133 (03) 517-528
- 19 Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17 (02) 165-172
- 20 Ikushima H, Todo T, Ino Y. et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 2011; 286 (48) 41434-41441
- 21 Wang J, Wang H, Li Z. et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 2008; 3 (11) e3769
- 22 Ligon KL, Huillard E, Mehta S. et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007; 53 (04) 503-517
- 23 Mostofa AG, Punganuru SR, Madala HR, Al-Obaide M, Srivenugopal KS. The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7 (02) E34
- 24 Gallo M, Ho J, Coutinho FJ. et al. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res 2013; 73 (01) 417-427
- 25 Zhang Y, Dutta A, Abounader R. The role of microRNAs in glioma initiation and progression. Front Biosci 2012; 17: 700-712
- 26 de la Iglesia N, Puram SV, Bonni A. STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med 2009; 9 (05) 580-590