Nervenheilkunde 2004; 23(09): 509-513
DOI: 10.1055/s-0038-1626415
Original- und Übersichtsarbeiten - Original and Review Articles
Schattauer GmbH

Die Neurobiologie der Nikotinabhängigkeit

The neurobiology of the nicotine dependency
N. Thürauf
1   Klinik mit Poliklinik für Psychiatrie und Psychotherapie der Universität Erlangen-Nürnberg
,
J. Lunkenheimer
1   Klinik mit Poliklinik für Psychiatrie und Psychotherapie der Universität Erlangen-Nürnberg
,
S. Bleich
1   Klinik mit Poliklinik für Psychiatrie und Psychotherapie der Universität Erlangen-Nürnberg
,
B. Lunkenheimer
1   Klinik mit Poliklinik für Psychiatrie und Psychotherapie der Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

Publication Date:
18 January 2018 (online)

Zusammenfassung

Die Nikotinabhängigkeit gilt heute als ein klassisches Modell der Suchtentwicklung. An der Entwicklung und an der Aufrechterhaltung einer Nikotinabhängigkeit sind als wesentliche Mechanismen die Sensitivierung zentraler Verstärkersysteme, Konditionierungsmechanismen als Form des assoziativen Lernens und das Lernen von Gewohnheiten (Habits) beteiligt. Neurobiologisch sind hierbei das dopaminerge mesolimbische Verstärkersystem, die zentrale Up-Regulation von nikotinergen Acetylcholinrezeptoren und zum Teil auch das endogene Opiatsystem, das glutamaterge und das serotonerge System involviert. Diese vielfältigen Angriffspunkte des Nikotins erklären auch die hohen Rückfallquoten von Rauchern.

Summary

Nicotine dependency represents a classical model of addiction. Sensitisation of central reinforcing systems, conditioning mechanisms as a form of associative learning and habit-learning contribute to the development and the maintenance of nicotine addiction. The mesolimbic dopaminergic reinforcing system, the central up regulation of nicotinic acetylcholine receptors, and in part the endogenous opioid system, the glutamatergic and the serotonergic system are involved in the neurobiological action of nicotine. These different actions also explain the high relapse rates of nicotine quitters.

 
  • Literatur

  • 1 Henningfield JE, Benowitz NL. Cigarettes and addiction. BMJ 1995; 310: 1082-83.
  • 2 Benowitz NL. Acute Biological Effects of Nicotine and its Metabolites. In: Clarke PBS, Quik M, Adlkofer F, Thurau K. (Hrsg). Effects of Nicotine on Biological Sytems II. Basel, Boston, Berlin: Birkhäuser; 1995
  • 3 Reavill C. et al. Behavioural effects of the nicotinic agonists N-(3-pyridylmethyl)pyrrolidine and isoarecolone in rats. Psychopharmacology 1990; 102: 521-28.
  • 4 Warburton DM. Nicotine as a cognitive enhancer. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 181-91.
  • 5 Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 1996; 36: 597-613.
  • 6 Levin ED, Wilson W, Rose JE, McEvoy J. Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 1996; 15: 429-36.
  • 7 Hunt SP, Schmidt J. The electron microscopic autoradiographic localization of alphabungarotoxin binding sites within the central nervous system of the rat. Brain Res 1978; 142: 152-9.
  • 8 Rogers M, Dani JA. Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys J 1995; 68: 501-6.
  • 9 Tsuneki H. et al. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur J Neurosci 2000; 12: 2475-85.
  • 10 McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692-6.
  • 11 Buisson B. et al. Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. J Neurosci 1996; 16: 7880-91.
  • 12 Zhang ZW. et al. Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 1994; 12: 167-77.
  • 13 Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000; 27: 349-57.
  • 14 Monteggia LM. et al. Cloning and transient expression of genes encoding the human alpha 4 and beta 2 neuronal nicotinic acetylcholine receptor (nAChR) subunits. Gene 1995; 155: 189-93.
  • 15 Picciotto MR. et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173-7.
  • 16 Kaiser SA. et al. Differential inhibition by alpha-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. J Neurochem 1998; 70: 1069-76.
  • 17 Kaiser S, Wonnacott S. Alpha-bungarotoxinsensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 2000; 58: 312-8.
  • 18 Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 1996; 06: 228-36.
  • 19 Di Chiara G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 1995; 38: 95-137.
  • 20 Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278: 52-8.
  • 21 Wise RA. Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 1982; 05: 39-87.
  • 22 Ploog D. Neuronale Substrate der Lust und Unlust. In: Heimann H. (Hrsg). Anhedonie – Verlust der Lebensfreude: Ein zentrales Phänomen psychischer Störungen. Stuttgart, New York: Gustav Fischer Verlag; 1990
  • 23 Lamb RJ. et al. The reinforcing and subjective effects of morphine in post-addicts: a doseresponse study. J Pharmacol Exp Ther 1991; 259: 1165-73.
  • 24 Fischman MW, Foltin RW. Self-administration of cocaine in humans. In: Bock JR, Whelan J. (Hrsg). Cocaine, scientific and social dimensions. CIBA foundation symposium No. 166. Chichester: Wiley; 1982
  • 25 Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18: 247-91.
  • 26 Heinz A, Batra A. Neurobiologie der Alkoholund Nikotinabhängigkeit. Stuttgart: W. Kohlhammer; 2003
  • 27 Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res Brain Res Rev 1998; 28: 309-69.
  • 28 Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992; 107: 285-89.
  • 29 Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382: 255-7.
  • 30 Schilstrom B. et al. Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of alpha7 nicotinic receptors in the ventral tegmental area. Neuroscience 1998; 85: 1005-9.
  • 31 Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000; 27: 349-57.
  • 32 Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382: 255-7.
  • 33 Clarke PB. Nicotine and smoking: a perspective from animal studies. Psychopharmacology 1987; 92: 135-43.
  • 34 Di Chiara G, Imperato A. Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. Eur J Pharmacol 1985; 115: 131-2.
  • 35 Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85: 5274-8.
  • 36 Imperato A, Di Chiara G. Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 1986; 239: 219-28.
  • 37 Imperato A, Honore T, Jensen LH. Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats. Brain Res 1990; 530: 223-8.
  • 38 Lapin EP, Maker HS, Sershen H, Lajtha A. Action of nicotine on accumbens dopamine and attenuation with repeated administration. Eur J Pharmacol 1989; 160: 53-9.
  • 39 Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992; 107: 285-9.
  • 40 Nisell M. et al. Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 1995; 76: 157-62.
  • 41 Nisell M, Marcus M, Nomikos GG, Svensson TH. Differential effects of acute and chronic nicotine on dopamine output in the core and shell of the rat nucleus accumbens. J Neural Transm 1997; 104: 1-10.
  • 42 Balfour DJ, Benwell ME, Birrell CE, Kelly RJ, Al Aloul M. Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 1998; 59: 1021-30.
  • 43 Balfour DJ. et al. The putative role of extrasynaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 2000; 113: 73-83.
  • 44 Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 2000; 393: 295-314.
  • 45 Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 1988; 50: 1243-7.
  • 46 Breese CR. et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 1997; 282: 7-13.
  • 47 Benhammou K. et al. [(3)H]Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day. Neuropharmacology 2000; 39: 2818-29.
  • 48 Breese CR. et al. Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 1997; 387: 385-98.
  • 49 Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 1983; 226: 817-25.
  • 50 Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 1983; 220: 214-6.
  • 51 Tempel A, Zukin RS. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci USA 1987; 84: 4308-12.
  • 52 Wewers ME, Dhatt R, Tejwani GA. Naltrexone administration affects ad libitum smoking behavior. Psychopharmacology 1998; 140: 185-90.
  • 53 Krishnan-Sarin S, Rosen MI, O’Malley SS. Naloxone challenge in smokers. Preliminary evidence of an opioid component in nicotine dependence. Arch Gen Psychiatry 1999; 56: 663-8.
  • 54 Benwell ME, Balfour DJ. Effects of nicotine administration and its withdrawal on plasma corticosterone and brain 5-hydroxyindoles. Psychopharmacology 1979; 63: 7-11.
  • 55 Pagnoni G. et al. Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 2002; 05: 97-8.
  • 56 Hummel T. et al. Olfactory discrimination of nicotine-enantiomers by smokers and nonsmokers. Chem Senses 1992; 17: 13-21.
  • 57 Thuerauf N. et al. Specific sensory detection, discrimination, and hedonic estimation of nicotine enantiomers in smokers and Nonsmokers: are there limitations in replacing the sensory components in Nicotine. J Clin Psychopharmacol 2000; 20: 472-8.
  • 58 Hummel T, Livermore A, Hummel C, Kobal G. Chemosensory event-related potentials in man: relation to olfactory and painful sensations elicited by nicotine. Electroencephalogr Clin Neurophysiol 1992; 84: 192-5.
  • 59 Renner B, Meindorfner F, Kaegler M, Thuerauf N, Barocka A, Kobal G. Discrimination of R-and S-nicotine by the trigeminal nerve. Chem. Senses 1998; 29 (05) 602.
  • 60 Thuerauf N. et al. Dose-dependent stereoselective activation of the trigeminal sensory system by nicotine in man. Psychopharmacology 1999; 142: 236-43.
  • 61 Walker JC. et al. Olfactory and trigeminal responses to nicotine. Drug Development Res 1996; 38: 160-8.
  • 62 Ito R. et al. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 2002; 22: 6247-53.
  • 63 Gray N, Boyle P. The future of the nicotineaddiction market. Lancet 2003; 362: 845-6.
  • 64 Bunce CJ. et al. Development of vaccines to help treat drug dependence. Curr Opin Mol Ther 2003; 05: 58-63.
  • 65 Kantak KM. Anti-cocaine vaccines: antibody protection against relapse. Expert Opin Pharmacother 2003; 04: 213-8.
  • 66 Kantak KM. Vaccines against drugs of abuse: a viable treatment option?. Drugs 2003; 63: 341-52.
  • 67 Kosten TR, Biegel D. Therapeutic vaccines for substance dependence. Expert Rev Vaccines 2002; 01: 363-71.
  • 68 Marsicano G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530-4.
  • 69 Walker DL. et al. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 2002; 22: 2343-51.