Nervenheilkunde 2006; 25(07): 521-526
DOI: 10.1055/s-0038-1626747
Originaler Artikel
Schattauer GmbH

Pharmakologie der Botulinumtoxine

Pharmacology of botulinum toxins
D. Dressler
1   Klinik für Neurologie, Universität Rostock
,
R. Benecke
1   Klinik für Neurologie, Universität Rostock
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

Therapeutische Präparationen von Botulinumtoxin (BT) bestehen aus Botulinum Neurotoxin (BNT), Komplexproteinen und pharmazeutischen Hilfsstoffen. Je nach Zielgewebe kann BT die cholinerge neuromuskuläre oder die cholinerge autonome Transmission an Schweißdrüsen, Tränendrüsen, Speicheldrüsen und glatter Muskulatur unterbrechen. Weitere direkte BT-Wirkungen lassen sich an Muskelspindelorganen nachweisen. Indirekte Effekte auf das Zentralnervensystem sind zahlreich, direkte sind nach intramuskulärer Injektion bisher nicht beschrieben worden.

In Deutschland wird BT Typ A als Botox®, Dysport® und Xeomin® und BT Typ B als NeuroBloc® angeboten. Nebenwirkungen der BT-Therapie können in obligate, lokale und systemische unterteilt werden. Die Nebenwirkungsprofile der verschiedenen BT Typ A-Präparationen sind weitgehend identisch. Bei BT Typ B zeigen sich häufig zusätzlich systemische autonome Nebenwirkungen. Langzeitbehandlungen rufen keine zusätzlichen Nebenwirkungen hervor. Gegen BNT können Antikörper gebildet werden, die die biologische BNT-Wirkung ganz oder teilweise blockieren. Das Risiko einer BNT-Antikörperbildung hängt wesentlich ab von der BNT-Menge, die bei jeder BT-Injektionsserie appliziert wird, vom Intervall zwischen den BT-Injektionsserien und von der Spezifischen Biologischen Aktivität (SBA) der BT-Präparation. Diese beträgt bei NeuroBloc® 5, bei Botox® 60, bei Dysport® 100 und bei Xeomin® 167 MUE/ng BNT (MU-E: Equivalenz-Mauseinheiten). Xeomin® dürfte daher die günstigsten Antigenitätseigenschaften aufweisen. Entsprechende klinische Erfahrungen stehen jedoch noch aus.

Summary

Therapeutic preparations of botulinum toxin (BT) consist of botulinum neurotoxin (BNT), complexing proteins and excipients. Depending on the target tissue, BNT blocks cholinergic neuromuscular or cholinergic autonomous transmission controlling sweat, lacrimal and salival glands as well as smooth muscles. Additional direct effects target muscle spindle organs. Indirect effects on the central nervous system are numerous, direct ones have not been reported after intramuscular application.

In Germany BT type A is being distributed as Botox®, Dysport® and Xeomin®, BT type B as NeuroBloc®. Acute adverse effects of BT can be obligate, local or systemic. Adverse effect profiles of the different preparations are similar. BT type B, however, often produces additional systemic autonomic adverse effects. Long-term application does not produce additional adverse effects.

BNT can be partially or completely blocked by antibodies. The major risk factors are the amount of BNT applied at each injection series, the interval between the injection series and the specific biological potency (SBP) of the BT preparation used. The SBP is 5 for NeuroBloc®, 60 for Botox®, 100 for Dysport® and 167 MU-E/ng BNT for Xeomin® (MU-E: equivalence mouse units). Xeomin® should therefore have a particular low antigenicity. Clinical data, however, are still lacking.

 
  • Literatur

  • 1 Benecke R, Jost WH, Kanovsky P, Ruzicka E, Comes G, Grafe S. A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 2005; 64: 1949-51.
  • 2 Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, Jahn R, Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 1994; 269: 1617-20.
  • 3 Brin MF, Dressler D, Aoki R. Pharmacology of botulinum toxin therapy. In: Jankovic J, Comella C, Brin MF. eds Dystonia: Etiology, Clinical Features, and Treatment. Philadelphia: Lippincott Williams & Wilkins; 2004: 93-112.
  • 4 Cui M, Li Z, You S, Khanijou S, Aoki R. Mechanisms of the antinociceptive effect of subcutaneous Botox: inhibition of peripheral and central nociceptive processing. Arch Pharmacol 2002; 365: R17.
  • 5 de Paiva A, Meunier FA, Molgo J, Aoki KR, Dolly JO. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 1999; 96: 3200-5.
  • 6 Dressler D, Bigalke H. Botulinum toxin type B de novo therapy of cervical dystonia: frequency of antibody-induced therapy failure. J Neurol 2005; 252: 904-7.
  • 7 Dressler D, Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 2003; 49: 34-8.
  • 8 Dressler D, Adib FSaberi, Benecke R. Botulinum toxin type B for treatment of axillar hyperhidrosis. J Neurol 2002; 249: 1729-32.
  • 9 Dressler D. Dysport produces intrinsically more swallowing problems than Botox: Unexpected results from a conversion factor study in cervical dystonia. J Neurol Neurosurg Psychiatry 2002; 73: 604.
  • 10 Dressler D, Dirnberger G. Botulinum toxin therapy: Risk factors for therapy failure. Mov Disord 2000; 15 (Suppl. 02) 51.
  • 11 Dressler D, Rothwell JC, Bigalke H. The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 2000; 247: 630-2.
  • 12 Dressler D, Rothwell JC. Electromyographic quantification of the paralysing effect of botulinum toxin. Eur Neurol 2000; 43: 13-6.
  • 13 Dressler D. Botulinum Toxin Therapy. Stuttgart, New York: Thieme Verlag; 2000
  • 14 Dressler D, Eckert J, Kukowski B, Meyer BU. Somatosensorisch Evozierte Potentiale bei Schreibkrampf: Normalisierung pathologischer Befunde unter Botulinumtoxin Therapie. Z EEG EMG 1993; 24: 191.
  • 15 Dressler D, Benecke R, Conrad B. Botulinum-Toxin in der Therapie kraniozervikaler Dystonien. Nervenarzt 1989; 60: 386-94.
  • 16 Duchen LW. An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 1971; 14: 47-60.
  • 17 Duchen LW. Changes in the electron microscopic structure of slow and fast skeletal muscle fibres of the mouse after the local injection of botulinum toxin. J Neurol Sci 1971; 14: 61-74.
  • 18 Erbguth F, Claus D, Engelhardt A, Dressler D. Systemic effect of local botulinum toxin injections unmasks subclinical Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiat 1993; 56: 1235-6.
  • 19 Filippi GM, Errico P, Santarelli R, Bagolini B, Manni E. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 1993; 113: 400-4.
  • 20 Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 1996; 35: 2630-6.
  • 21 Girlanda P, Vita G, Nicolosi C, Milone S. Messina Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry 1992; 55: 844-5.
  • 22 Ishikawa H, Mitsui Y, Yoshitomi T, Mashimo K, Aoki S, Mukuno K, Shimizu K. Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles. Jpn J Ophthalmol 2000; 44: 106-9.
  • 23 Jankovic J, Vuong KD, Ahsan J. Comparison of efficacy and immunogenicity of original versus current botulinum toxin in cervical dystonia. Neurology 2003; 60: 1186-8.
  • 24 Kaji R, Kohara N, Katayama M, Kubori T, Mezaki T, Shibasaki H, Kimura J. Muscle afferent block by intramuscular injection of lidocaine for the treatment of writer’s cramp. Muscle Nerve 1995; 18: 234-5.
  • 25 Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J. Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neuro 1995; l38: 155-62.
  • 26 Kerner J. Das Fettgift und die Fettsäure und ihre Wirkungen auf den tierischen Organismus. Ein Beitrag zur Untersuchung des in verdorbenen Würsten giftig wirkenden Stoffes. Stuttgart, Tübingen: Cotta-Verlag; 1822
  • 27 Kerner J. Neue Beobachtungen über die in Württemberg so häufig vorfallenden tödlichen Vergiftungen durch den Genuss geräucherter Würste. Tübingen: GF Osiander; 1820
  • 28 Kerner J. Vergiftung durch verdorbene Würste. Tübinger Blätter f Naturwissensch u Arzneykunde 1817; 03: 1-25.
  • 29 Lange DJ, Brin MF, Warner CL, Fahn S, Lovelace RE. Distant effects of local injection of botulinum toxin. Muscle Nerve 1987; 10: 552-5.
  • 30 McMahon H, Foran P, Dolly J. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes: clues to the locus of action. J Biol Chem 1992; 267: 21338-43.
  • 31 Morris J, Jobling P, Gibbins I. Differential inhibition by botulinum neurotoxin A of cotransmitters released from autonomic vasodilator neurons. Am J Physiol Heart Circ Physiol 2001; 281: 2124-32.
  • 32 Olney RK, Aminoff MJ, Gelb DJ, Lowenstein DH. Neuromuscular effects distant from the site of botulinum neurotoxin injection. Neurology 1988; 38: 1780-3.
  • 33 Pellizzari R, Rossetto O, Schiavo G. Montecucco Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 1999; 354: 259-68.
  • 34 Pickett A, Panjwani N, O’Keeffe RS. Potency of type A botulinum toxin preparations in clinical use. 40th Annual Meeting of the Interagency Botulism Research Coordinating Committee (IBRCC); Nov. 2003. Atlanta, USA.:
  • 35 Probst TE, Heise H, Heise P, Benecke R. Dressler Rare immunologic side effects of botulinum toxin therapy: brachial plexus neuropathy and dermatomyositis. Mov Disord 2002; 17 (Suppl. 05) S49
  • 36 Purkiss J, Welch M, Doward S, Foster K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 2000; 59: 1403-6.
  • 37 Rosales RL, Arimura K, Takenaga S, Osame M. Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 1996; 19: 488-96.
  • 38 Sanders DB, Massey EW, Buckley EG. Botulinum toxin for blepharospasm: single-fibre EMG studies. Neurology 1986; 36: 545-7.
  • 39 Schantz EJ. Historical Perspective. In: Jankovic J, Hallett M. Therapy with Botulinum Toxin. New York, Basel, Hong Kong: Marcel Dekker, Inc; 1994: XXIII-XXVI.
  • 40 Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC, Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 1993; 335: 99-103.
  • 41 Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino Pde Laureto, DasGupta BR, Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359: 832-5.
  • 42 Scott AB. Foreword. In: Jankovic J, Hallett M. Therapy with Botulinum Toxin. New York, Basel, Hong Kong: Marcel Dekker, Inc; 1994: VII-IX.
  • 43 Scott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. J Pediatr Ophthalmol Strabismus 1980; 17: 21-5.
  • 44 Scott AB, Rosenbaum A, Collins CC. Pharmacologic weakening of extraocular muscles. Invest Ophthalmol 1973; 12: 924-7.
  • 45 Setler P. The biochemistry of botulinum toxin type B. Neurology 2000; 55 (Suppl. 05) S22-S28.
  • 46 Shone CC, Melling J. Inhibition of calcium-dependent release of noradrenaline from PC12 cells by botulinum type-A neurotoxin. Long-term effects of the neurotoxin on intact cells. Eur J Biochem 1992; 207: 1009-16.
  • 47 Takamizawa K, Iwamori M, Kozaki S, Sakaguchi G, Tanaka R, Takayama H, Nagai Y. TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 1986; 201: 229-32.
  • 48 Welch MJ, Purkiss JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000; 38: 245-58.
  • 49 Wiegand H, Erdmann G, Wellhoner HH. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 1976; 292: 161-5.
  • 50 Yamasaki S. et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 1994; 269: 12764-72.