Nervenheilkunde 2007; 26(12): 1123-1129
DOI: 10.1055/s-0038-1626970
Arbeiten zum Schwerpunkt - Theme Articles
Schattauer GmbH

Strategien zur Resektion von Gliomen in eloquenten Hirnarealen

Strategies for resection of gliomas in eloquent areas of the brain
R. D. Rothoerl
1   Neurochirurgische Klinik und Poliklinik der Technischen Universität München
,
F. Ringel
1   Neurochirurgische Klinik und Poliklinik der Technischen Universität München
,
B. Meyer
1   Neurochirurgische Klinik und Poliklinik der Technischen Universität München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. Januar 2018 (online)

Zusammenfassung

Die kritische Wertung der aktuellen Literatur zeigt, dass das Ausmaß der Resektion eines hirneigenen Tumors entscheidend die Lebenserwartung bzw. das rezidivfreie Überleben beeinflusst. Die Beweislage ist bei höhergradigen Tumoren noch eindeutiger als bei den niedergradigen. Eine besondere Herausforderung ergibt sich bei Gliomen in “eloquenter”, also funktionell wichtiger Lage, da das Prinzip des “nihil nocere” auch hier nicht verletzt werden sollte.

Innerhalb der letzten Jahre wurden eine Reihe von technologischen Hilfen zur Identifikation funktionell relevanter Hirnareale entwickelt mit dem Ziel, diese während der Operation zu schonen, gleichzeitig aber ein Maximum an Resektion zu erlauben. Sie lassen sich grundsätzlich einteilen in Hilfsmittel zur Lokalisation/Resektion und zur funktionellen Steuerung des Eingriffs. Die Neuronavigation mit z. B. Integration der funktionellen MRT, der Faserbahndarstellung, des Ultraschalls, der Tumorfluoreszens gehört zu den Erstgenannten Hilfsmitteln, ebenso wie die intraoperative Bildgebung (MRT, CT). Die Hilfsmittel zur funktionellen Steuerung des Eingriffs betreffen die intraoperative Elektrophysiologie, die den Goldstandard des intraoperativen Neuromonitorings darstellt, da die bildgebenden Verfahren noch keine ausreichende Sicherheit und Genauigkeit bieten.

Bei kombiniertem Einsatz dieser Technologien und Anwendung einer adäquaten mikrochirurgischen Technik ist es heute möglich, mit einem hohen Maß an Sicherheit für den Patienten, hirneigene Tumoren zu resezieren, die noch vor Kurzem als inoperabel angesehen wurden.

Summary

A critical review of the recent literature shows, that the extent of surgical resection is a key factor for overall survival and progression-free survival in the treatment of gliomas. The level of evidence is even better in high-grade than in low-grade gliomas. A distinct challenge is therefore the maximum resection of gliomas in functionally important, i.e. eloquent areas of the brain, because the principle of “nihil nocere” should not be violated.

Several technologies were recently developed in order to allowa maximum of tumour resection and avoid functional damage. These devices can be subdivided into tools for localization/resection and for functional guidance. Among the first group is neuronavigation with integration of functional MRI, fiber tracking, ultrasound, tumour fluorescence etc. as well as intra-operative MRI and CT. The latter comprises all types of intra-operative electrophysiology, which is still the gold standard for intra-operative monitoring, because functional image-guidance does not have a sufficient reliability for the time being.

Using a combination of these technologies and an adequate microsurgical technique, it is possible to safely resect intrinsic brain tumours in eloquent areas of the brain, which were deemed inoperable only recently.

 
  • Literatur

  • 1 Alberstone CD, Skirboll SL, Benzel EC. et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg 2000; 92: 79-90.
  • 2 Berger MS, Deliganis AV, Dobbins JD. et al. The effect of extent of resection on recurrence in patients with low-grade cerebral hemisphere gliomas. Cancer 1994; 74: 1784-1791.
  • 3 Berger MS, Ojemann GA. Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg 1992; 58: 153-161.
  • 4 Berger MS, Rostomily RC. Low-grade gliomas: Functional mapping resection strategies, extent of resection, and outcome. J Neurooncol 1997; 34: 85-101.
  • 5 Cedzich C, Taniguchi M, Schafer S. et al. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 1996; 38: 962-970.
  • 6 Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 2005; Mar 15; 103 (06) 1227-1233.
  • 7 Danks RA, Aglio LS, Gugino LD. et al. Craniotomy under local anesthesia and monitored conscious sedation for the resection of tumors involving eloquent cortex. J Neurooncol 2000; 49: 131-139.
  • 8 Duffau H, Capelle L, Sichez JP. et al. Intraoperative direct electrical stimulations of the central nervous system: the Salpêtriére experience with 60 patients. Acta Neurochir (Wien) 1999; 141: 1157-1167.
  • 9 Duffau H, Capelle L, Sichez N. et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 2002; 125: 199-214.
  • 10 Fadul C, Wood J, Thaler H. et al. Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology 1988; 38: 1374-1379.
  • 11 Haglund MM, Berger MS, Shamseldin M, L.ettich E, Ojemann GA. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 1994; Apr; 34 (04) 567-576.
  • 12 Hirsch J, Ruge MI, Kim KHS. et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 2000; 47: 711-722.
  • 13 Hund M, Rezai A, Kronberg E. et al. Magnetoencephalography mapping: basis of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 1997; 40: 936-943.
  • 14 Keles GE, Liamborn KR, Berger MS. Low-grade hemispheric gliomas in adults:a critical review of extent of resection as a factor influencing outcome. J Neurosurg 2001; 95: 735-745.
  • 15 Kral T, Kurthen M, Schramm J, Urbach H, Meyer B. Stimulation mapping via implanted grid electrodes prior to surgery for gliomas in highly eloquent cortex. Neurosurgery. 2006 Feb; 58(1 Suppl).
  • 16 Lehéricy S, Duffau H, Cornu P. et al. Correspondence between fMRI somatotopy and individual brain anatomy of the central region: comparison with intrasurgical stimulations in patients with brain tumors. J Neurosurg 2000; 92: 589-598.
  • 17 McDonald JD, Chong BW, Lewine JD. et al. Integration of preoperative and intraoperative functional brain mapping in a frameless stereotactic environment for lesions near the eloquent cortex. Technical note.J Neurosurg 1999; 90: 591-598.
  • 18 Meyer FB, Bates LM, Goerss BS. et al. Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 2001; 76: 677-687.
  • 19 Nakamura M, Konishi N, Tsunoda S. et al. Analysis of prognostic and survival factors related to treatment of low-grade astrocytoma in adults. Oncology 2000; 58: 108-116.
  • 20 Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2004 May; 54. (05): 1061-70 discussion 1070–1072.
  • 21 Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg 2007; Apr; 106 (04) 582-592.
  • 22 Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg 2007; Apr; 106 (04) 582-592.
  • 23 Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahlbusch R. Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 2004; Aug; 55 (02) 358-370.
  • 24 Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R. Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 2001; May; 48 (05) 1082-1089.
  • 25 Ojemann JG, Miller JW, Silbergeld DL. Preserved function in brain invaded by tumor. Neurosurgery 1996; Aug; 39 (02) 253-258.
  • 26 Piepmeier J, Christopher S, Spencer D. et al. Variations in the natural history and survival of patients with supratentorial low grade astocytomas. Neurosurgery 1996; 39: 872-879.
  • 27 Proescholdt MA, Macher C, Woertgen C, Brawanski A. Level of evidence in the literature concerning brain tumor resection. Clin Neurol Neurosurg 2005; Feb; 107 (02) 95-98.
  • 28 Radner H, Blumcke I, Reifenberger G, Wiestler OD. The new WHO classification of tumors of the nervous system 2000. Pathology and genetics Pathologe 2002; Jul; 23 (04) 260-283.
  • 29 Sayawa R, Hammoud M, Schoppa D. et al. Neurological outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 1998; 42: 1044-1056.
  • 30 Scerrati M, Roselli R, Iacoangeli M. et al. Prognostic factors in low-grade (WHO grade II) gliomas of the cerebral hemispheres: the role of surgery. J Neurol Neurosurg Psychiatry 1996; 61: 291-296.
  • 31 Schramm J, Aliashkevich AF. Surgery for temporal mediobasal tumors: experience based on a series of 235 patients. Neurosurgery 2007; Feb; 60 (02) 285-294.
  • 32 Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; Oct; 65 (04) 476-483.
  • 33 Stummer W, Pichlmeier U, Meinel T. et al. ALAGlioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; May; 07 (05) 392-401.
  • 34 Taylor MD, Bernstein M. Awake craniotomy with brain mapping as a routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg 1999; 90: 35-41.
  • 35 Coenen VA, Schoth U, Bürgel F. et al. Limitationen der Faserbahndarstellung im Rahmen der klinischen Anwendung. www.curac.org/ curac06/download/abstracts/58%20Coenen.pdf.
  • 36 Woermann FG, Jokeit H, Luerding R. et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 2003; 61: 699-701.
  • 37 Waoyd M. Intraoperative Sonographie in der Neurochirurgie Electromedia. 2000; 68: 47-51.
  • 38 Yasargil MG. Microneurosurgery Volume 4A. Stuttgart, New York: Georg Thieme Verlag; 1994: 305.
  • 39 Yingling CD, Ojemann S, Dodson B. et al. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg 1999; 91: 922-927.
  • 40 Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J. Functional results after resective procedures involving the supplementary motor area. J Neurosurg 1996; Oct; 85 (04) 542-549.