Nervenheilkunde 2009; 28(11): 809-816
DOI: 10.1055/s-0038-1627159
Übersichtsartikel
Schattauer GmbH

Neurobiologie der Zwangsstörung

Teil 2: Konzepte und Befunde aus der NeurobildgebungNeurobiology of obsessive-compulsive disorderPart II: Concepts and findings from neuroimaging
B. Zurowski
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
,
F. Hohagen
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
,
A. Kordon
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 07. Juni 2009

angenommen am: 08. Juni 2009

Publikationsdatum:
20. Januar 2018 (online)

Zusammenfassung

Die Konzeptualisierung der Zwangsstörung im Sinne einer Dysfunktion kortiko-striatothalamo- kortikalen Schleifen hat durch aktuelle bildgebende Befunde hinsichtlich der beteiligten Zentren, Neurotransmitter und Metaboliten wesentliche Impulse erhalten. Aufbauend auf Teil 1: Konzepte aus Pathophysiologie und Genetik (81) wird eine selektive Übersicht bildgebender Befunde zur Zwangsstörung vorgenommen, unter Berücksichtigung relevanter Befunde aus den kognitiven Neurowissenschaften und der Neuropsychologie. Längsschnittuntersuchungen im Verlauf psychotherapeutischer und pharmakotherapeutischer Interventionen, parallele Verwendung mehrerer bildgebender Methoden, Untersuchung gesunder Angehöriger und Trennung nach Symptomfaktoren der Störung gehören zu den neuen Entwicklungen.

Summary

The conceptualisation of obsessive-compulsive disorder (OCD) as a dysfunctional state within cortico-striato-thalamo-cortical loops is predominantly influenced by recent findings from neuroimaging, which allowed for probing brain regions, neurotransmitters and metabolites involved. Based on Part I: Concepts from pathophysiology and genetics (81) we present a selective review of findings from neuroimaging in OCD including related findings from cognitive neuroscience and neuropsychology. Among the most recent approaches are longitudinal investigations performed concomitantly to psychotherapy and pharmacotherapy, the use of parallel imaging techniques, inclusion of healthy relatives and explicit separation of OCD symptom factors, respectively.

 
  • Literatur

  • 1 Adams BL. et al. Single photon emission computerized tomography in obsessive compulsive disorder: a preliminary study. J Psychiatry Neurosci 1993; 18: 109-12.
  • 2 Adams KH. et al. Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol 2005; 8: 391-401.
  • 3 Alptekin K. et al. Tc-99m HMPAO brain perfusion SPECT in drug-free obsessive-compulsive patients without depression. Psychiatry Res 2001; 107: 51-6.
  • 4 Baxter LR. et al. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 1987; 44: 211-8.
  • 5 Baxter LR. et al. Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 1988; 145: 1560-3.
  • 6 Baxter Jr LR. Neuroimaging studies of obsessive compulsive disorder. Psychiatr Clin North Am 1992; 15: 871-84.
  • 7 Boldrini M. et al. Selective cognitive deficits in obsessive- compulsive disorder compared to panic disorder with agoraphobia. Acta Psychiatr Scand 2005; 111: 150-8.
  • 8 Breiter HC. et al. Functional magnetic resonance imaging of symptom provocation in obsessivecompulsive disorder. Arch Gen Psychiatry 1996; 53: 595-606.
  • 9 Brody AL. et al. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res 1998; 84: 1-6.
  • 10 Cavedini P. et al. Decision-making heterogeneity in obsessive-compulsive disorder: ventromedial prefrontal cortex function predicts different treatment outcomes. Neuropsychologia 2002; 40: 205-11.
  • 11 Cavedini P. et al. The advantages of choosing antiobsessive therapy according to decision-making functioning. J Clin Psychopharmacol 2004; 24: 628-31.
  • 12 Chamberlain SR. et al. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 2005; 29: 399-419.
  • 13 Cottraux J. et al. A controlled positron emission tomography study of obsessive and neutral auditory stimulation in obsessive-compulsive disorder with checking rituals. Psychiatry Res 1996; 60: 101-12.
  • 14 Edmonstone Y. et al. Uptake of 99mTc-exametazime shown by single photon emission computerized tomography in obsessive-compulsive disorder compared with major depression and normal controls. Acta Psychiatr Scand 1994; 90: 298-303.
  • 15 Fava G. et al. Prodromal symptoms in obsessive-compulsive disorder. Psychopathology 1996; 29: 131-4.
  • 16 Ferrari JR, McCown W. Procrastination tendencies among obsessive-compulsives and their relatives. J Clin Psychol 1994; 50: 162-7.
  • 17 Fitzgerald KD. et al. Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry 2005; 57: 287-94.
  • 18 Giedd JN. et al. Case study: acute basal ganglia enlargement and obsessive-compulsive symptoms in an adolescent boy. J Am Acad Child Adolesc Psychiatry 1996; 35: 913-5.
  • 19 Grachev ID. et al. Structural abnormalities of frontal neocortex in obsessive-compulsive disorder. Arch Gen Psychiatry 1998; 55: 181-2.
  • 20 Gu BM. et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 2008; 131: 155-64.
  • 21 Hendler T. et al. Brain reactivity to specific symptom provocation indicates prospective therapeutic outcome in OCD. Psychiatry Res 2003; 124: 87-103.
  • 22 Jang JH. et al. A proton MRSI study of brain N-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive-compulsive disorder. Am J Psychiatry 2006; 163: 1202-7.
  • 23 Jenike MA. et al. Cerebral structural abnormalities in obsessive-compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Arch Gen Psychiatry 1996; 53: 625-32.
  • 24 Kim JJ. et al. Grey matter abnormalities in obsessivecompulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry 2001; 179: 330-4.
  • 25 Kuelz AK, Hohagen F, Voderholzer U. Neuropsychological performance in obsessive-compulsive disorder: a critical review. Biol Psychol 2004; 65: 185-236.
  • 26 Kuhn J. et al. Tiefenhirnstimulation bei psychiatrischen Erkrankungen. Fortschr Neurol Psychiatr 2007; 75: 447-57.
  • 27 Kwon JS. et al. Similarity and disparity of obsessivecompulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J Neurol Neurosurg Psychiatry 2003; 74: 962-4.
  • 28 Lucey JV. et al. Regional cerebral blood flow in obsessive- compulsive disordered patients at rest. Differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry 1995; 167: 629-34.
  • 29 Lucey JV. et al. Brain blood flow in anxiety disorders. OCD, panic disorder with agoraphobia, and posttraumatic stress disorder on 99mTcHMPAO single photon emission tomography (SPET). Br J Psychiatry 1997; 171: 346-50.
  • 30 Luxenberg JS. et al. Neuroanatomical abnormalities in obsessive-compulsive disorder detected with quantitative X-ray computed tomography. Am J Psychiatry 1988; 145: 1089-93.
  • 31 Maltby N. et al. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessivecompulsive disorder: an event-related fMRI study. Neuroimage 2005; 24: 495-503.
  • 32 Mataix-Cols D. et al. Neural correlates of anxiety associated with obsessive-compulsive symptom dimensions in normal volunteers. Biol Psychiatry 2003; 53: 482-93.
  • 33 Mataix-Cols D. et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 2004; 61: 564-76.
  • 34 Menzies L. et al. Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 2007; 130: 3223-36.
  • 35 Menzies L. et al. Integrating evidence from neuroimaging and neuropsychological studies of obsessive- compulsive disorder: The orbitofronto-striatal model revisited. Neurosci Biobehav Rev 2008; 32: 525-49.
  • 36 Mindus P, Nyman H. Normalization of personality characteristics in patients with incapacitating anxiety disorders after capsulotomy. Acta Psychiatr Scand 1991; 83: 283-91.
  • 37 Molina V. et al. Cerebral perfusion, electrical activity and effects of serotonergic treatment in obsessivecompulsive disorder. A preliminary study. Neuropsychobiology 1995; 32: 139-48.
  • 38 Moresco RM. et al. Fluvoxamine treatment and D2 receptors: a pet study on OCD drug-naive patients. Neuropsychopharmacology 2007; 32: 197-205.
  • 39 Moritz S. et al. Enhanced perceived responsibility decreases metamemory but not memory accuracy in obsessive-compulsive disorder (OCD). Behav Res Ther 2007; 45: 2044-52.
  • 40 Nakao T. et al. Brain activation of patients with obsessive- compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study. Biol Psychiatry 2005; 57: 901-10.
  • 41 Nielen MM. et al. Decision making performance in obsessive compulsive disorder. J Affect Disord 2002; 69: 257-60.
  • 42 Nordahl TE. et al. Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology 1989; 2: 23-8.
  • 43 Olley A, Malhi G, Sachdev P. Memory and executive functioning in obsessive-compulsive disorder: a selective review. J Affect Disord 2007; 104: 15-23.
  • 44 Perani D. et al. [18F]FDG PET study in obsessivecompulsive disorder. A clinical/metabolic correlation study after treatment. Br J Psychiatry 1995; 166: 244-50.
  • 45 Phillips ML. et al. A differential neural response in obsessive-compulsive disorder patients with washing compared with checking symptoms to disgust. Psychol Med 2000; 30: 1037-50.
  • 46 Pogarell O. et al. Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder. Biol Psychiatry 2003; 54: 1406-13.
  • 47 Purcell R. et al. Cognitive deficits in obsessive-compulsive disorder on tests of frontal-striatal function. Biol Psychiatry 1998; 43: 348-57.
  • 48 Rauch SL. et al. Regional cerebral blood flow measured during symptom provocation in obsessive- compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 1994; 51: 62-70.
  • 49 Rauch SL, Dougherty D, Shin LM. Neural correlates of factor-analyzed OCD symptom dimensions: A PET study. CNS Spectrums 1998; 3: 37-43.
  • 50 Rauch SL. et al. Volume reduction in the caudate nucleus following stereotactic placement of lesions in the anterior cingulate cortex in humans: a morphometric magnetic resonance imaging study. J Neurosurg 2000; 93: 1019-25.
  • 51 Rauch SL. et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol Psychiatry 2001; 50: 659-67.
  • 52 Rauch SL. et al. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology 2002; 27: 782-91.
  • 53 Robinson D. et al. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch Gen Psychiatry 1995; 52: 393-8.
  • 54 Rosenberg DR. et al. Thalamic volume in pediatric obsessive-compulsive disorder patients before and after cognitive behavioral therapy. Biol Psychiatry 2000; 48: 294-300.
  • 55 Rosenberg DR. et al. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry 2000; 39: 1096-103.
  • 56 Rosenberg DR, MacMillan S. Imaging and neurocircuitry of OCD. In: Davis K. et al (eds). Neuropsychopharmacology: The 5th generation of progress: American College of Neuropsychopharmacology. 2002: 1621-45.
  • 57 Roth RM. et al. Event-related functional magnetic resonance imaging of response inhibition in obsessive- compulsive disorder. Biol Psychiatry 2007; 62: 901-9.
  • 58 Rubin RT. et al. Regional xenon 133 cerebral blood flow and cerebral technetium 99m HMPAO uptake in unmedicated patients with obsessive-compulsive disorder and matched normal control subjects. Determination by high-resolution single-photon emission computed tomography. Arch Gen Psychiatry 1992; 49: 695-702.
  • 59 Rubin RT. et al. Regional 133xenon cerebral blood flow and cerebral 99mTc-HMPAO uptake in patients with obsessive-compulsive disorder before and during treatment. Biol Psychiatry 1995; 38: 429-37.
  • 60 Russell A. et al. Localized functional neurochemical marker abnormalities in dorsolateral prefrontal cortex in pediatric obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2003; 13 (Suppl. 01) S31-8.
  • 61 Saxena S. et al. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacology 1999; 21: 683-93.
  • 62 Saxena S. et al. Cerebral metabolism in major depression and obsessive-compulsive disorder occurring separately and concurrently. Biol Psychiatry 2001; 50: 159-70.
  • 63 Saxena S. et al. Differential brain metabolic predictors of response to paroxetine in obsessive-compulsive disorder versus major depression. Am J Psychiatry 2003; 160: 522-32.
  • 64 Saxena S. et al. Rapid effects of brief intensive cognitive- behavioral therapy on brain glucose metabolism in obsessive-compulsive disorder. Mol Psychiatry 2009; 14: 197-205.
  • 65 Shapira NA. et al. Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiatry 2003; 54: 751-6.
  • 66 Simpson HB. et al. Serotonin transporters in obsessive- compulsive disorder: a positron emission tomography study with [11C]McN 5652. Biol Psychiatry 2003; 54: 1414-21.
  • 67 Stein DJ. et al. Single photon emission computed tomography of the brain with Tc-99m HMPAO during sumatriptan challenge in obsessive-compulsive disorder: investigating the functional role of the serotonin auto-receptor. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23: 1079-99.
  • 68 Swedo SE. et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 1989; 46: 518-23.
  • 69 Swedo SE. et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 1992; 49: 690-4.
  • 70 Szeszko PR. et al. Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psychiatry 1999; 56: 913-9.
  • 71 Ursu S. et al. Overactive action monitoring in obsessive- compulsive disorder: evidence from functional magnetic resonance imaging. Psychol Sci 2003; 14: 347-53.
  • 72 van den Heuvel OA. et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 2005; 62: 301-9.
  • 73 van den Heuvel OA. et al. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain 2009; 132: 853-68.
  • 74 van der Wee NJ. et al. Spatial working memory in obsessive-compulsive disorder improves with clinical response: A functional MRI study. Eur Neuropsychopharmacol 2007; 17: 16-23.
  • 75 Van Laere K. et al. Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 2006; 47: 740-7.
  • 76 Whiteside SP, Port JD, Abramowitz JS. A metaanalysis of functional neuroimaging in obsessivecompulsive disorder. Psychiatry Res 2004; 132: 69-79.
  • 77 Whiteside SP. et al. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res 2006; 146: 137-47.
  • 78 Yucel M. et al. Functional and biochemical alterations of the medial frontal cortex in obsessivecompulsive disorder. Arch Gen Psychiatry 2007; 64: 946-55.
  • 79 Zurowski B. et al. Symptom remission in OCD after discontinuation of pharmacotherapy with fluoxetine: a case for looking beyond serotonin. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 959-60.
  • 80 Zurowski B. et al. Non-selective effects of selective serotonin reuptake inhibitors. Biol Psychiatry 2008; 63: e5.
  • 81 Zurowski B, Hohagen F, Kordon A. Neurobiologie der Zwangsstörung. Teil 1: Konzepte zur Pathophysiologie und Genetik. Nervenheilkunde 2009; 28: 625-630.