Nervenheilkunde 2015; 34(03): 129-137
DOI: 10.1055/s-0038-1627567
Parkinson
Schattauer GmbH

E-Health in der Physiotherapie bei Parkinson-Patienten

Verbesserung von Gleichgewicht und GangstörungE-health in physiotherapy in patients with Parkinson’s disease
K. Ziegler
1   Abteilung Neurologie und klinische Neurophysiologie, Zentrum für Parkinson-Syndrome und Bewegungsstörungen, Schön Klinik, München Schwabing
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingegangen am: 17. Dezember 2014

angenommen am: 17. Dezember 2014

Publikationsdatum:
22. Januar 2018 (online)

Zusammenfassung

Für Parkinson-Patienten sind aufgrund der Basalganglienerkrankung Ausführung und Erwerb automatischer Bewegungen schwierig. Gehen und Balance sind besonders betroffen, was die Sturzgefahr erhöht und die Lebensqualität reduziert. Bildgebende Verfahren ermöglichen den Nachweis, dass bei Parkinson-Patienten in frühen Erkrankungsstadien Neuroplastizität als Basis für motorisches Lernen möglich ist. Bewegungslernen gelingt durch intensives, aufgabenspezifisches Üben unter kognitiver Beteiligung, ausgelöst durch Feedback. Feedback kann heute elektronisch unterstützt in Echtzeit während der Bewegung gegeben werden. In eine virtuelle Realität eingebunden, können Patienten damit bei digitalen Spielen, wie Nintendo Wii oder Kinect™ Adventure!, ihr Gleichgewicht trainieren bzw. in virtueller Umgebung auf dem Laufband (V-Time) das Gehen in ablenkenden, alltagsrelevanten Situationen verbessern. Feedback in Form von intelligentem Cueing hilft, die Gangparameter zu korrigieren und motorische Blockaden zu überwinden. Dieser Artikel fasst Basalganglienfunktion und Fähigkeit zum motorischen Lernen zusammen, und stellt die elektronisch unterstützten Möglichkeiten (E-Health) zur Therapie von Gleichgewicht und Gangstörung in der Physiotherapie vor.

Summary

In patients with Parkinson’s disease the execution and acquisition of automatic movements are challenging due to dysfunction of the basal ganglia. Especially impaired are gait and balance, resulting in higher fall risk and reduced quality of life. Imaging technologies of the brain provides evidence of neuroplasticity in Parkinson’s disease as a base for motor learning. Learning of movements is possible through intensive, taskspecific exercise with cognitive engagement triggered by feedback. Today, feedback can be provided electronically supported during movement practice in real-time. Through integration in virtual reality, patients can train their balance function using digital games as Nintendo Wii or Microsoft Kinect™ Adventure! or improve their gait with treadmill training in a virtual environment (V-time) during simulated distracting situations of daily live. Feedback provided as intelligent cueing is helpful to correct the gait parameters or to overcome motor blocks. This article summarizes the basal ganglia function as well as the ability of motor learning and describes the above mentioned electronically supported devices (e-health) for therapy of balance and gait disorders within physiotherapeutic treatment.

 
  • Literatur

  • 1 Morris ME, Iansek R, Matyas TA, Summers JJ. Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanisms. Brain 1996; 119 (02) 551-68.
  • 2 Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 1994; 117 (05) 1169-81.
  • 3 Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 2005; 128 (10) 2250-9.
  • 4 Keus S, Munneke M, Graziano M. European Physiotherapy Guideline for Parkinson’s disease 2014 – penultimate version for review. KNGF/ ParkinsonNet, the Netherlands [Internet]. www.ParkinsonNet.info
  • 5 Rothwell JC. The motor functions of the basal ganglia. J Integr Neurosci 2011; 10 (03) 303-15.
  • 6 Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 2013; 12 (07) 716-26.
  • 7 Doyon J. et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 2009; 199 (01) 61-75.
  • 8 Fisher BE. et al. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. Neuroreport 2013; 24 (10) 509-14.
  • 9 Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord 2009; 15 (Suppl. 03) S53-8.
  • 10 Muslimovic D, Post B, Speelman JD, Schmand B. Motor procedural learning in Parkinson’s disease. Brain 2007; 130 (Pt 11): 2887-97.
  • 11 Abbruzzese G, Trompetto C, Marinelli L. The rationale for motor learning in Parkinson’s disease. Eur J Phys Rehabil Med 2009; 45 (02) 209-14.
  • 12 Farley B, Fox C, Ramig L, McFarland D. Intensive amplitude-specific therapeutic approaches for Parkinson disease: toward a neuroplasticity-principled rehabilitaton model. Top Geriat Rehabil 2008; 24 (02) 99-114.
  • 13 Wulf G, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ 2010; 44 (01) 75-84.
  • 14 Li F, Harmer P. et al. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med 2012; 366 (06) 511-9.
  • 15 Corcos DM. et al. A two-year randomized controlled trial of progressive resistance exercise for Parkinson’s disease: Progressive Resistance Exercise in PD. Movement Disorders 2013; 28 (09) 1230-40.
  • 16 Lin C-HJ, Sullivan KJ, Wu AD, Kantak S, Winstein CJ. Effect of task practice order on motor skill learning in adults with Parkinson disease: a pilot study. Phys Ther 2007; 87 (09) 1120-31.
  • 17 Onla-or S, Winstein CJ. Determining the optimal challenge point for motor skill learning in adults with moderately severe Parkinson’s disease. Neurorehabil Neural Repair 2008; 22 (04) 385-95.
  • 18 Lewthwaite R. Motivational considerations in physical activity involvement. Phys Ther 1990; 70 (12) 808-19.
  • 19 Guadagnoli MA, Leis B, Van Gemmert AWA, Stelmach GE. The relationship between knowledge of results and motor learning in Parkinsonian patients. Parkinsonism Relat Disord 2002; 09 (02) 89-95.
  • 20 Chiviacowsky S, Campos T, Domingues MR. Reduced frequency of knowledge of results enhances learning in persons with Parkinson’s disease. Front Psychol 2010; 01: 226.
  • 21 Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J Neurol Phys Ther 2014; 38 (03) 190-200.
  • 22 Ginis P, Nieuwboer A, Heremans E. Cueing und Biofeedback: Kompensationsstrategien von Patienten mit Parkinson-Syndrom. Neuroreha 2013; 05 (03) 134-8.
  • 23 Rahman S, Griffin HJ, Quinn NP, Jahanshahi M. Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord 2008; 23 (10) 1428-34.
  • 24 Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME. Cueing and gait improvement among people with Parkinson’s disease: a metaanalysis. Arch Phys Med Rehabil 2013; 94 (03) 562-70.
  • 25 Nieuwboer A. et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. Journal of neurology, neurosurgery, and psychiatry 2007; 78 (02) 134-40.
  • 26 Fietzek UM, Schroeteler FE, Ziegler K, Zwosta J, Ceballos-Baumann AO. Randomized cross-over trial to investigate the efficacy of a two-week physiotherapy programme with repetitive exercises of cueing to reduce the severity of freezing of gait in patients with Parkinson’s disease. Clin Rehabil 1. April 2014; E-Pub.
  • 27 Casamassima F, Ferrari A, Milosevic B, Ginis P, Farella E, Rocchi L. A wearable system for gait training in subjects with Parkinson’s disease. Sensors (Basel) 2014; 14 (04) 6229-46.
  • 28 Mazilu S, Blanke U, Hardegger M, Tröster G, Gazit E, Hausdorff J. Gait Assist: A Daily-Life Support and training system for Parkinson’s disease patients with freezing of gait [Internet]. 2014 http://dx.doi.org/10.1145/2556288.2557278
  • 29 Mirelman A, Maidan I, Deutsch JE. Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson’s disease. Mov Disord 2013; 28 (11) 1597-608.
  • 30 Mirelman A. et al. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol 2013; 13: 15.
  • 31 Barry G, Galna B, Rochester L. The role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence. J Neuroeng Rehabil 2014; 11: 33.
  • 32 Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord 2013; 28 (11) 1520-33.
  • 33 Allen NE, Schwarzel AK, Canning CG. Recurrent falls in Parkinson’s disease: a systematic review. Parkinsons Dis 2013; 90: 6274.
  • 34 Ziegler K, Ceballos-Baumann A. Stationäre multimodale Komplextherapie bei Parkinson-Syndrom. Nervenheilkunde 2014; 33 (1–2): 42-8.
  • 35 Goodwin VA, Richards SH, Henley W, Ewings P, Taylor AH, Campbell JL. An exercise intervention to prevent falls in people with Parkinson’s disease: a pragmatic randomised controlled trial. J Neurol Neurosurg Psychiatr 2011; 82 (11) 1232-8.
  • 36 Strouwen C. et al. Protocol for a randomized comparison of integrated versus consecutive dual task practice in Parkinson’s disease: the DUALITY trial. BMC Neurol 2014; 14: 61.
  • 37 Mehrholz J, Friis R, Kugler J, Twork S, Storch A, Pohl M. Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst Rev 2010; (01) CD007830.
  • 38 Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease?. J Gerontol A Biol Sci Med Sci 2011; 66 (02) 234-40.
  • 39 Matinolli M, Korpelainen JT, Korpelainen R, Sotaniemi KA, Virranniemi M, Myllylä VV. Postural sway and falls in Parkinson’s disease: a regression approach. Mov Disord 2007; 22 (13) 1927-35.
  • 40 Schoneburg B, Mancini M, Horak F, Nutt JG. Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord 2013; 28 (11) 1474-82.
  • 41 Pompeu JE. et al. Feasibility, safety and outcomes of playing Kinect Adventures!TM for people with Parkinson’s disease: a pilot study. Physiotherapy 2014; 100 (02) 162-8.
  • 42 Pompeu JE. et al. Effect of Nintendo WiiTM-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy 2012; 98 (03) 196-204.
  • 43 Van den Heuvel MRC, Kwakkel G, Beek PJ, Berendse HW, Daffertshofer A, van Wegen EEH. Effects of augmented visual feedback during balance training in Parkinson’s disease: A pilot randomized clinical trial. Parkinsonism Relat Disord. 2014 E-Pub.
  • 44 Galna B. et al. Retraining function in people with Parkinson’s disease using the Microsoft kinect: game design and pilot testing. J Neuroeng Rehabil 2014; 11: 60.