Nervenheilkunde 2014; 33(01/02): 64-74
DOI: 10.1055/s-0038-1627662
Übersichtsartikel
Schattauer GmbH

Neuronale Korrelate des Psychoserisikosyndroms

Funktionelles Neuroimaging bei Personen mit erhöhtem PsychoserisikoFunctional neuroimaging in individuals with ultrahigh risk conditions for developing psychosis
D. Hirjak
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
P. A. Thomann
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
M. S. Depping
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
,
S. D. Bienentreu
2   Fachklinik für Psychiatrie und Psychotherapie der MARIENBORN GmbH, Zülpich
,
R. C. Wolf
1   Zentrum für Psychosoziale Medizin, Klinik für Allgemeine Psychiatrie, Universitätsklinik Heidelberg
› Author Affiliations
Further Information

Publication History

eingegangen am: 10 April 2013

angenommen am: 19 April 2013

Publication Date:
23 January 2018 (online)

Zusammenfassung

Ein erhöhtes Psychoserisiko wird durch das Vorhandensein klinisch prädiktiver Symptome operationalisiert. Eine objektive Charakterisierung von Personen mit erhöhtem Psychoserisiko könnte durch funktionell bildgebende Verfahren gelingen, da diese Verfahren eine In-vivo-Darstellung früher neuronaler Veränderungen bei Personen mit erhöhtem Psychoserisiko ermöglichen. Veränderungen der Gehirnfunktion vor dem Beginn einer manifesten Psychose könnten als Marker der klinischen Transition und als prognostische Marker präventiver Interventionen genutzt werden. In den vergangenen Jahren wurden Personen mit erhöhtem Psychoserisiko mithilfe der funktionellen Magnetresonanztomografie (fMRT) untersucht, begünstigt durch die Verfügbarkeit, die Non-Invasivität und die hohe räumliche und zeitliche Auflösung des Verfahrens. In dieser Übersichtsarbeit soll die fMRT-Datenlage bei Personen mit erhöhtem Psychoserisiko zusammengefasst und im Hinblick auf ihre klinische Relevanz diskutiert werden. In der Literatur konnten anhand einer systematischen Literaturrecherche via PubMed und MEDLINE (Schlüsselwörter: „psychosis”, „ultra-high risk” und „functional mri”) und einer erweiterten Literatursuche 17 funktionell bildgebende Untersuchungen, eine Übersichtsarbeit und drei Metaanalysen identifiziert werden. In der Gesamtwertung der fMRT-Daten gibt es erste Hinweise darauf, dass bei Personen mit erhöhtem Psychoserisiko Veränderungen der Gehirnfunktion in frontalen, insulären und somatosensorischen Arealen vorliegen könnten. Die klinische Relevanz und der prädiktive Wert dieser Befunde für klinische Transition und Therapieoutcome sind jedoch unklar.

Summary

At present, ultra-high risk (UHR) conditions for developing psychosis are clinically operationalized syndromes. Early recognition of UHR individuals by means of functional neuroimaging techniques may be successful, since modern neuroimaging account for in-vivo characterization of early neuronal changes among these subjects. Alterations of the brain function before manifest psychosis may be used as neuroimaging indicators for clinical transition into full-blown psychosis and prognostic markers of early interventions. Over the last years, UHR individuals have been increasingly investigated by means of functional MR-imaging (fMRI). The aim of this article was to systematically review the extant fMRI data in UHR individuals and to discuss the clinical relevance of this evidence. Based on a systematic literature search using electronic databases PubMed and MEDLINE (keywords „psychosis”, „prodrome OR high risk” and “functional mri”), we identified 17 whole-brain fMRI studies, one systematic review and three meta-analyses. Considering the extant data, there is some evidence for functional alterations of frontal, insular and somatosensory brain regions. However, the clinical significance and the predictive value of functional neuroimaging findings for clinical transition and therapeutic outcome still remain unclear.

 
  • Literatur

  • 1 Hirjak D. et al. Indizierte Prävention psychotischer Störungen. Aktuelle Evidenz zur Behandlung von Personen mit erhöhtem Psychoserisiko. Nervenheilkunde 2012; 31 (09) 923-32.
  • 2 Falkai P. Diagnose, Ätiologie und Neuropsychopathologie der Schizophrenie. In: Neuropsychologie der Schizophrenie. Symptome, Kognition, Gehirn. Kircher T, Gauggel S. (eds.). Heidelberg: Springer; 2008
  • 3 Maurer K, Häfner H. Früherkennung der Schizophrenie und die Bedeutung für Verlauf und Outcome. Journal für Neurologie, Neurochirurgie und Psychiatrie 2007; 08 (02) 24-34.
  • 4 Resch F. Früherkennung und Frühbehandlung der Schizophrenie: Chance oder Dilemma?. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 2008; 36 (04) 235-44.
  • 5 McGorry PD. et al. The “close-in” or ultra highrisk model: a safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophr Bull 2003; 29 (04) 771-90.
  • 6 McGorry PD. et al. Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry 2002; 59 (10) 921-8.
  • 7 McGorry PD. et al. Ethics and early intervention in psychosis: keeping up the pace and staying in step. Schizophr Res 2001; 51 (01) 17-29.
  • 8 Yung AR, Nelson B. Young people at ultra high risk for psychosis: a research update. Early Interv Psychiatry 2011; 5 Suppl 1: 52-7.
  • 9 Yung AR. et al. The comprehensive assessment of at-risk mental states (CAARMS). Melbourne: University of Melbourne, Department of Psychiatry, Australia; 2000
  • 10 Yung AR. et al. Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 2004; 67 (2–3) 131-42.
  • 11 Yung AR. et al. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry 1998; Suppl. 172 (33) 14-20.
  • 12 Fusar-Poli PI. et al. Predicting psychosis: metaanalysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 2012; 69 (03) 220-9.
  • 13 Vasic N, Wolf RC. Wie früh kann eine Schizophrenie erkannt und behandelt werden?. Nervenheilkunde 2006; 25: 1-7.
  • 14 Bechdolf A. et al. Frühintervention vor schizophrenen Erkrankungen. Nervenheilkunde 2006; 25: 17-27.
  • 15 Bechdolf A. et al. Preventing progression to firstepisode psychosis in early initial prodromal states. Br J Psychiatry 2012; 200 (01) 22-9.
  • 16 Fusar-Poli P. et al. The psychosis high-risk state: a comprehensive state-of-the-art review. Arch Gen Psychiatry 2012; 1-14.
  • 17 Hirjak D. et al. Neuronale Korrelate des Psychoserisikosyndroms: Strukturelles Neuroimaging bei Personen mit erhöhtem Psychoserisiko. Nervenheilkunde. 2012 32. im Druck
  • 18 Fusar-Poli P. et al. Mapping prodromal psychosis: A critical review of neuroimaging studies. Eur Psychiatry 2012; 27 (03) 181-91.
  • 19 Jung WH. et al. Gray matter volumetric abnormalities associated with the onset of psychosis. Front Psychiatry 2012; 03: 101.
  • 20 Wolf RC. et al. Kognitive Defizite in der Schizophrenie. Präfrontale Dysfunktion und funktionelle Entkopplung. Nervenheilkunde 2005; 07 (24) 1-8.
  • 21 Pfueller U. et al. Behandlung kognitiver Defizite bei Schizophrenie. Teil I: Diagnostik und psychologische Verfahren. Nervenarzt 2010; 81 (05) 556-63.
  • 22 Heaton RK. et al. Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 2001; 58 (01) 24-32.
  • 23 Roesch-Ely D. et al. Behandlung kognitiver Defizite bei Schizophrenie. Teil II: Pharmakologische Strategien. Nervenarzt 2010; 81 (05) 564-76.
  • 24 Fusar-Poli P. et al. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 2012; 69 (06) 562-71.
  • 25 Simon AE. et al. Cognitive functioning in at-risk mental states for psychosis and 2-year clinical outcome. Schizophr Res 2012; 142 (1–3): 108-15.
  • 26 Lin A. et al. Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophr Res 2011; 132 (01) 1-7.
  • 27 Giuliano AJ. et al. Neurocognition in the psychosis risk syndrome: a quantitative and qualitative review. Curr Pharm Des 2012; 18 (04) 399-415.
  • 28 Fusar-Poli P. et al. Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neurosci Biobehav Rev 2007; 31 (04) 465-84.
  • 29 Wolf RC. et al. Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog Neuro- psychopharmacol Biol Psychiatry 2009; 33 (08) 1464-73.
  • 30 Broome MR. et al. Neural correlates of executive function and working memory in the ‘at-risk mental state’. Br J Psychiatry 2009; 194 (01) 25-33.
  • 31 Ogawa S. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87 (24) 9868-72.
  • 32 Keefe RS, Harvey P. Cognitive impairment in schizophrenia. Handb Exp Pharmacol 2012; 213: 11-37.
  • 33 Smieskova R. et al. Neuroimaging predictors of transition to psychosis – a systematic review and meta-analysis. Neurosci Biobehav Rev 2010; 34 (08) 1207-22.
  • 34 Fusar-Poli P. Voxel-wise meta-analysis of fMRI studies in patients at clinical high risk for psychosis. J Psychiatry Neurosci 2012; 37 (02) 106-12.
  • 35 Smieskova R. et al. Different duration of at-risk mental state associated with neurofunctional abnormalities. A multimodal imaging study. Hum Brain Mapp 2012; 33 (10) 2281-94.
  • 36 Fusar-Poli P. et al. Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry 2010; 67 (07) 683-91.
  • 37 Pauly K. et al. The interaction of working memory and emotion in persons clinically at risk for psychosis: an fMRI pilot study. Schizophr Res 2010; 120 (1–3): 167-76.
  • 38 Fusar-Poli P. et al. Spatial working memory in individuals at high risk for psychosis: longitudinal fMRI study. Schizophr Res 2010; 123 (01) 45-52.
  • 39 Allen P. et al. Altered prefrontal and hippocampal function during verbal encoding and recognition in people with prodromal symptoms of psychosis. Schizophr Bull 2011; 37 (04) 746-56.
  • 40 Allen P. et al. Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull 2012; 38 (05) 1040-9.
  • 41 Benetti S. et al. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 2009; 132 (Pt 9): 2426-36.
  • 42 Allen P. et al. Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage 2010; 49 (01) 947-55.
  • 43 Fusar-Poli P. et al. Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: longitudinal VBMfMRI study. J Psychiatr Res 2011; 45 (02) 190-8.
  • 44 Allen P. et al. Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophr Bull 2012; 38 (06) 1268-79.
  • 45 Sabb FW. et al. Language network dysfunction as a predictor of outcome in youth at clinical high risk for psychosis. Schizophr Res 2010; 116 (2–3): 173-83.
  • 46 Gruber O. et al. Neuronale Korrelate gestörter Arbeitsgedachtnisfunktionen bei schizophrenen Patienten Ansatze zur Etablierung neurokognitiver Endophanotypen psychiatrischer Erkrankungen. Radiologe 2005; 45 (02) 153-60.
  • 47 Gruber O. Arbeitsgedächtnis – Bildgebung. In: Neuropsychologie der Schizophrenie. Kircher T, Gauggel S. (eds.). Heidelberg: Springer; 2008
  • 48 Callicott JH. et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 2003; 160 (04) 709-19.
  • 49 Callicott JH. et al. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003; 160 (12) 2209-15.
  • 50 Henseler I, Gruber H. Arbeitsgedachtnisstörungen bei psychiatrischen Erkrankungen. Nervenarzt 2007; 78 (09) 991-6.
  • 51 Das P. et al. Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophr Res 2007; 90 (1–3): 284-94.
  • 52 Seiferth NY. et al. Increased neural response related to neutral faces in individuals at risk for psychosis. NeuroImage 2008; 40 (01) 289-97.
  • 53 Williams LM. et al. Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. Am J Psychiatry 2004; 161 (03) 480-9.
  • 54 Brune M. et al. Mental state attribution, neurocognitive functioning, and psychopathology: what predicts poor social competence in schizophrenia best?. Schizophr Res 2007; 92 (1–3): 151-9.
  • 55 Brune M. et al. An fMRI study of “theory of mind” in at-risk states of psychosis: comparison with manifest schizophrenia and healthy controls. NeuroImage 2011; 55 (01) 329-37.
  • 56 Broome MR. et al. Neural correlates of movement generation in the ‘at-risk mental state’. Acta Psychiatr Scand 2010; 122 (04) 295-301.
  • 57 Knutson B. et al. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12 (17) 3683-7.
  • 58 Juckel G. et al. Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology 2012; 66 (01) 50-6.
  • 59 Eickhoff SB, Rottschy C. Metaanalysen, Datenbanken und Modelle in der psychiatrischen Forschung. In: Positionen der Psychiatrie. Schneider F. (ed.). Berlin: Springer; 2012
  • 60 Moher D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62 (10) 1006-12.
  • 61 Moher D. et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 1999; 354 (9193): 1896-900.
  • 62 Pauly K, Habel U. Rekrutierung von Studienteilnehmern., in Funktionelle MRT. In: Psychiatrie und Neurologie. Schneider F, GR Fink. (eds.). Berlin: Springer; 2012
  • 63 Shim G. et al. Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study. Behav Brain Funct 2010; 06: 58.
  • 64 Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006; 19 (02) 145-50.
  • 65 Smieskova R. et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? – a systematic review. Curr Pharm Dec 2009; 15 (22) 2535-49.
  • 66 Roder CH. et al. FMRI, antipsychotics and schizophrenia. Influence of different antipsychotics on BOLD-signal. Curr Pharm Des 2010; 16 (18) 2012-25.
  • 67 Lennertz L. et al. A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2012; 262 (02) 117-24.
  • 68 Lennertz L. et al. The functional coding variant Asn107Ile of the neuropeptide S receptor gene (NPSR1) is associated with schizophrenia and modulates verbal memory and the acoustic startle response. Int J Neuropsychopharmacol 2011; 15 (09) 1205-15.
  • 69 Sambataro F. et al. Catechol-o-methyl transferase modulates cognition in late life: evidence and implications for cognitive enhancement. CNS Neurol Disord Drug Targets 2012; 11 (03) 195-208.
  • 70 Nickl-Jockschat T. et al. Progressive pathology is functionally linked to the domains of language and emotion: meta-analysis of brain structure changes in schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2011; 261 Suppl 2: S166-71.
  • 71 Pruessner M. et al. Stress and protective factors in individuals at ultra-high risk for psychosis, first episode psychosis and healthy controls. Schizophr Res 2011; 129 (01) 29-35.
  • 72 Manoach DS. et al. Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry 2001; 158 (06) 955-8.
  • 73 Smith SM. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 2009; 106 (31) 13040-5.
  • 74 Damoiseaux JS. et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006; 103 (37) 13848-53.
  • 75 Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neuro sci 2010; 04: 19.
  • 76 Meindl T. et al. Test-retest reproducibility of the default-mode network in healthy individuals. Hum Brain Mapp 2010; 31 (02) 237-46.
  • 77 Smith SM. et al. Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 2012; 109 (08) 3131-6.
  • 78 Niazy R. et al. Spectral characteristics of resting state networks. Prog Brain Res 2011; 193: 259-76.
  • 79 Jung WH. et al. Regional brain atrophy and functional disconnection in Broca’s Area in individuals at ultra-high risk for psychosis and schizophrenia. PLoS One 2012; 07 (12) e51975.
  • 80 Otti A. et al. “Default-mode”-Netzwerk des Gehirns. Neurobiologie und klinische Bedeutung. Nervenarzt 2012; 83 (01) 16-24.
  • 81 Buckner RL. et al. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1-38.
  • 82 Picchioni M. et al. Medial temporal lobe activity at recognition increases with the duration of mnemonic delay during an object working memory task. Hum Brain Mapp 2007; 28 (11) 1235-50.
  • 83 Burgess PW, Shallice T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 1996; 34 (04) 263-72.
  • 84 Caplan R, Dapretto M. Making sense during conversation: an fMRI study. Neuroreport 2001; 12 (16) 3625-32.