Nervenheilkunde 2010; 29(05): 275-281
DOI: 10.1055/s-0038-1628762
125. Wanderversammlung
Schattauer GmbH

Genetische Befunde bei Epilepsie und ihre Konsequenzen

Genetic findings in patients with epilepsy and their consequences
Y. G. Weber
1   Abteilung Neurologie mit Schwerpunkt Epileptologie, Universitätsklinikum Tübingen
,
H. Lerche
1   Abteilung Neurologie mit Schwerpunkt Epileptologie, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

eingegangen am: 18 January 2010

angenommen am: 22 January 2010

Publication Date:
24 January 2018 (online)

Zusammenfassung

Epilepsien gehören zu den häufigsten neurologischen Erkrankungen und betreffen etwa 1% der Weltbevölkerung. Man unterscheidet nach der Ätiologie die symptomatischen Formen, die sekundär durch eine andere Krankheit, meist durch Hirnläsionen, hervorgerufen werden, sowie die idiopathischen Formen, die genetisch bedingt sind. Die Gendefekte bei den idiopathischen Epilepsien betreffen ganz überwiegend Ionenkanäle und verändern die Erregbarkeit von Nervenzellen oder die synaptische Übertragung. Dadurch kann das Auftreten epileptischer Anfälle gut erklärt werden. Die Erforschung der genetischen Defekte trug viel zum Verständnis die Pathophysiologie von Epilepsien bei und bildet die Grundlage für eine gezielte Entwicklung neuer Medikamente. Die Kenntnis des genetischen Befundes für den einzelnen Patienten ist in vielerlei Hinsicht hilfreich. Die diagnostische Sicherheit spielt für den Patienten psychologisch eine wichtige Rolle und erübrigt weitere diagnostische Maßnahmen. Die genetische Beratung in Bezug auf weitere Familienangehörige spielt eine wichtige Rolle, in manchen Fällen ist auch eine prädiktive Testung sinnvoll. Schließlich können die genetischen Befunde therapeutische Konsequenzen haben. Diese verschiedenen Aspekte werden in dem vorliegenden Artikel anhand von Beispielen dargelegt und diskutiert.

Summary

Epilepsy is one of the most common neurological disorders affecting about 1% of the world’s population. The underlying etiology distinguishes between symptomatic forms, based on a primary disease such as a cerebral lesion, and idiopathic forms with a genetic origin. The genetic defects known for idiopathic epilepsies mainly affect ion channels changing neuronal excitability or synaptic transmission, which can well explain the occurance of epileptic seizures. The identification of genetic alterations helps to better understand the pathophysiology of epilepsy which is the basis for the discovery of new anti-epileptic therapies. Knowledge of the genetic defect can be helpful for the individual patient in many aspects. It can be psychologically very important for a particular patient to be sure about the diagnosis and it can help to avoid further diagnostic procedures. Genetic counselling for family members of patients with idiopathic epilepsy can be very helpful, and in some cases a predictive testing is meaningful. Some of the genetic results are also relevant for therapeutic decisions. These different aspects are discussed in the present article for several examples.

 
  • Literatur

  • 1 Chen Y. et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54: 239-43.
  • 2 Chioza B. et al. Association between the alpha-1A calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 2001; 56: 1245-1246.
  • 3 Claes L. et al. De novo mutations in the sodiumchannel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68: 1327-1332.
  • 4 Cossette P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31: 184-189.
  • 5 de Kovel CG. et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010; 133: 23-32.
  • 6 De Vivo DC. et al. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991; 325: 703-9.
  • 7 Escayg A. et al. Coding and noncoding variation of the human calcium-channel beta(4)-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66: 1531-1539.
  • 8 Freitag CM. et al. Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia 2001; 42: 979-985.
  • 9 Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc 1996; 71: 576-586.
  • 10 Helbig I. et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41: 160-2.
  • 11 Heron SE. et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002; 360: 851-852.
  • 12 Heron SE. et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007; 62: 560-568.
  • 13 Lerche H. et al. Ion channel defects in idiopathic epilepsies. Curr Pharm 2005; 11: 2737-52.
  • 14 Liao Y. et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain. 2010 in press.
  • 15 Maljevic S. et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006; 59: 983-7.
  • 16 Maljevic S, Wuttke T, Lerche H. Nervous system KV7 disorders: break down of a subthreshold brake. J Physiol 2008; 586: 1791-801.
  • 17 Ottman R. et al. Genetic Testing in the Epilepsies. Report of the ILAE Genetics Commission. Epilepsia. 2010 in press.
  • 18 Rundtfeld C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282: 73-6.
  • 19 Saint-Martin C. et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Human Mutat 2009; 30: 397-405.
  • 20 Seidner G. et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998; 18: 188-91.
  • 21 Suls A. et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008; 131: 1831-44.
  • 22 Suls A. et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 2009; 66: 415-9.
  • 23 Suzuki T. et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004; 36: 842-849.
  • 24 Weber YG, Jacob M, Weber G, Lerche H. A BFIS-like syndrome with late onset and febrile seizures: Suggestive linkage to chromosome 16p11.2–16q12.1. Epilepsia 2008; 11: 1959-1964.
  • 25 Weber YG, Lerche H. Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 2008; 50: 648-54.
  • 26 Weber YG. et al. GLUT1 mutations are a cause of paroxysmal exercise-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008; 118: 2157-68.
  • 27 Wuttke TV. et al. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 2005; 67: 1009-17.