Kinder- und Jugendmedizin 2009; 9(07): 407-410
DOI: 10.1055/s-0038-1629030
Allergologie
Schattauer GmbH

Die Zeit: Eine neue Dimension in der Diskussion um die Prävention allergischer Erkrankungen

Time: a new dimension in the discussion about allergy prevention
G. Hansen
1   Medizinische Hochschule Hannover (MHH), Zentrum für Kinder- und Jugendmedizin
› Author Affiliations
Further Information

Publication History

Eingereicht am: 29 July 2009

angenommen am: 03 August 2009

Publication Date:
27 January 2018 (online)

Zusammenfassung

Während die Pharmakotherapie des Asthma bronchiale eine effektive Kontrolle der Symptome ermöglicht, fehlen kausale Therapiekonzepte, sodass eine Heilung dieser chronischen Erkrankung bisher nicht möglich ist. Präventiven Maßnahmen kommt daher eine herausragende Bedeutung zu, da sie die einzige Chance darstellen, der zunehmenden Inzidenz allergischer Erkrankungen effektiv zu begegnen. Eine der großen Herausforderungen der allergologischen Forschung war in den vergangenen Jahren die Identifikation von protektiven Faktoren in Bezug auf die Entstehung von allergischen Erkrankungen. Eine neue Dimension ist ganz aktuell in den Mittelpunkt des Interesses gerückt: die Zeit. Epidemiologische und tierexperimentelle Studien haben gezeigt, dass sich das zeitliche Fenster, in dem das Asthma- und Allergierisiko des Kindes durch Umgebungsfaktoren beeinflusst werden kann, sehr früh öffnet – und möglicherweise auch früh wieder schließt. Demnach sollten präventive bzw. protektive Maßnahmen früh einsetzen, um einen optimalen, dauerhaften Schutz zu erzielen. Erste Hinweise sprechen dafür, dass die Auseinandersetzung mit Allergenen bereits intrauterin beginnt, sodass Umgebungsfaktoren schon während der Schwangerschaft einen Einfluss auf das spätere Allergie- und Asthma-Risiko des Kindes haben. Möglicherweise beeinflusst sogar das immunologische Gedächtnis, das die Mutter bereits vor der Schwangerschaft erworben hat, die Immunreaktion des Kindes bei der späteren Auseinandersetzung mit potenziellen Allergenen.

Summary

Symptoms of patients with asthma can be efficiently controlled by pharmacotherapy. However, no therapeutic strategies/options exist that directly influence the aetiology of this chronic disease and subsequently, a cure of asthma is not achievable/possible so far. Preventive measures, to avoid the development of asthma from the beginning, are therefore most important. They currently represent the only option to effectively decrease the increasing incidence of allergic diseases. Over the last years, the identification of several protective factors and risk factors for the development of allergic diseases was the great challenge/achievement of research in the field of allergy. A new dimension came into the focus of interest: the time. Epidemiological studies and animal models suggest that the risk for the development of asthma or allergy through the influence of environmental factors might be especially high during a short period of time in early life (maybe even before birth). Subsequently, preventive and protective measures should be initiated as early in life as possible to achieve an optimal and long lasting protection. Preliminary data suggest that the immune status of the mother may play a crucial role for the risk of the child to develop allergy or asthma.

 
  • Literatur

  • 1 Umetsu DT. et al. Asthma: an epidemic of dysregulated immunity. Nat Immunol 2002; 3 (08) 715-720.
  • 2 Riedler J. et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358 9288 1129-1133.
  • 3 Braun-Fahrlande C. et al. Prevalence of hay fever and allergic sensitization in farmer’s children and their peers living in the same rural community. SCARPOL team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution. Clin Exp Allergy 1999; 29 (01) 28-34.
  • 4 van der Velden VH. et al. Selective development of a strong Th2 cytokine profile in high-risk children who develop atopy: risk factors and regulatory role of IFN-gamma, IL-4 and IL-10. Clin Exp Allergy 2001; 31 (07) 997-1006.
  • 5 Kalliomaki M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001; 357 9262 1076-1079.
  • 6 Braun-Fahrlander C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002; 347 (12) 869-877.
  • 7 Szepfalusi Z. et al. Prenatal allergen contact with milk proteins. Clin Exp Allergy 1997; 27 (01) 28-35.
  • 8 Prescott SL. et al. Development of allergen-specific T-cell memory in atopic and normal children. Lancet 1999; 353 9148 196-200.
  • 9 Prescott SL. et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 1998; 160 (10) 4730-4737.
  • 10 Uthoff H. et al. Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates. J Immunol 2003; 171 (07) 3485-3492.
  • 11 Victor JR. et al. Preconception maternal immunization to dust mite inhibits the type I hypersensitivity response of offspring. J Allergy Clin Immunol 2003; 111 (02) 269-277.
  • 12 Blumer N. et al. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 2005; 35 (03) 397-402.
  • 13 Wang Y, McCusker C. Neonatal exposure with LPS and/or allergen prevents experimental allergic airways disease: development of tolerance using environmental antigens. J Allergy Clin Immunol 2006; 118 (01) 143-151.
  • 14 Zinkernagel RM. Maternal antibodies, childhood infections, and autoimmune diseases. N Engl J Med 2001; 345 (18) 1331-1335.
  • 15 Renz H. et al. Breast feeding modifies production of SIgA cow’s milk-antibodies in infants. Acta Paediatr Scand 1991; 80 (02) 149-154.
  • 16 Tang ML. et al. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet 1994; 344 8928 983-985.
  • 17 Kalliomaki M. et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 2003; 361 9372 1869-1871.
  • 18 Hansen G. et al. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 1999; 103 (02) 175-183.
  • 19 Hansen G. et al. CD4(+) T helper cells engineered to produce latent TGF-beta1 reverse allergen-induced airway hyperreactivity and inflammation [In Process Citation]. J Clin Invest 2000; 105 (01) 61-70.
  • 20 Hansen G. et al. Vaccination with heat-killed Listeria as adjuvant reverses established allergen-induced airway hyperreactivity and inflammation: role of CD8+ T cells and IL-18. J Immunol 2000; 164 (01) 223-230.
  • 21 Hansen G. et al. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci USA 2000; 97 (12) 6751-6756.
  • 22 Maecker HT. et al. Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J Immunol 2001; 166 (02) 959-965.
  • 23 Trujillo-Vargas CM. et al. Vaccinations with T-helper type 1 directing adjuvants have different suppressive effects on the development of allergen-induced T-helper type 2 responses. Clin Exp Allergy 2005; 35 (08) 1003-1013.
  • 24 Scherf W, Burdach S, Hansen G. Reduced expression of transforming growth factor beta 1 exacerbates pathology in an experimental asthma model. Eur J Immunol 2005; 35 (01) 198-206.
  • 25 Polte T. et al. CD137-mediated immunotherapy for allergic asthma. J Clin Invest 2006; 116 (04) 1025-1036.
  • 26 Medesan C. et al. Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol 1996; 26 (10) 2533-2536.
  • 27 Roopenian DC. et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG home-ostasis, and fate of IgG-Fc-coupled drugs. J Immunol 2003; 170 (07) 3528-3533.
  • 28 Friedman NJ, Zeiger RS. The role of breast-feeding in the development of allergies and asthma. J Allergy Clin Immunol 2005; 115 (06) 1238-1248.
  • 29 Leme AS. et al. Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol 2006; 176 (02) 762-769.
  • 30 Goleva E. et al. Factors that regulate naturally occurring T regulatory cell-mediated suppression. J Allergy Clin Immunol 2005; 116 (05) 1094-1100.
  • 31 Magott-Procelewska M. Costimulatory pathways as a basic mechanisms of activating a tolerance signal in T cells. Ann Transplant 2004; 9 (03) 13-18.
  • 32 Miyamoto K. et al. The ICOS molecule plays a crucial role in the development of mucosal tolerance. J Immunol 2005; 175 (11) 7341-7347.
  • 33 Lange H. et al. Reversal of the adult IgE high responder phenotype in mice by maternally transferred allergen-specific monoclonal IgG antibodies during a sensitive period in early ontogeny. Eur J Immunol 2002; 32 (11) 3133-3141.
  • 34 Polte T. et al. Maternal tolerance achiebed during pregnancy is transferred to the offspring via breast milk and persistently protects the offspring from allergic asthma. Clin Exp Allergy 2008; 38: 1950-1958.
  • 35 Polte T. et al. Allergy prevention starts before conception: Maternofetal transfer of tolerance protects against the development of asthma. J Allergy Clin Immunol 2008; 122: 1022-1030.
  • 36 Schaub B. et al. Imapirment of T-regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 2008; 121: 1491-1499.
  • 37 Ege MJ. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 2006; 117 (04) 817-823.