Subscribe to RSS
DOI: 10.1055/s-0038-1629244
Zur Entwicklung der fusionslosen operativen Therapie von frühkindlichen Skoliosen
The evolution of operative non-fusion treatment for early onset scoliosisPublication History
Eingereicht am: 20 February 2014
angenommen am 06 March 2014
Publication Date:
31 January 2018 (online)

Zusammenfassung
Progressive frühkindliche Skoliosen werden bevorzugt möglichst lange konservativ mit seriellen Gipskorsetten und Redressionsorthesen behandelt. Bei Krümmungen über 60° kommen operative Maßnahmen in Betracht. Die langstreckige, frühzeitige Fusionsoperation ist heute obsolet. Funktionell und quo ad vitam ist sie schlechter als der natürliche Verlauf. Wachstumserhaltende Verfahren sind heute die Mittel der Wahl: VEPTR bei kongenitalen Skoliosen und begleitenden Thoraxfehlbildungen sowie beidseitige Wachstumsstäbe (growing rods) bei normal segmentierten und formierten Wirbelsäulen. Von extern steuerbare Antriebseinheiten ersetzen zuneh-mend die Notwendigkeit der repetitiv opera-tiven Verlängerung herkömmlicher Implantate mit weniger Komplikationen und besserem Komfort für Patient und Familie. Zukünftig gilt es, die Begrifflichkeit „non-fusion“ und den suggerierten Erhalt der Funktion der Wirbelsäule in die Praxis umzusetzen. Die lang-jährige überbrückende Immobilisierung mit Wachstumsstäben kontrolliert zwar die Deformität, schließt jedoch noch meist mit einer finalen, instrumentierten Wirbelsäulenfusion bei Wachstumsende ab.
Summary
The primary treatment of progressive early scoliosis is preferably conservative by means of serial plasters and spinal orthoses. Severe deformities of more than 60° Cobb angles warrant a surgical instrumented intervention to prevent further deterioration. Long fusions in early childhood are obsolete. They were shown to be worse than the natural history and often deleterious for the patient, both functionally and quo ad vitam. Growth-preserving operative non-fusion strategies represent the modern standard: VEPTR for congenital scoliosis with concomittant thoracic malformations and bilateral growing rods for normally segmented and formed spines. Implants with non-invasively expandable magnetic-driven are increasingly used and omit the need for half-yearly invasive expansion procedure which are a burden for both patients and their families. Future strategies must seek to convert the term „non-fusion“ into biologic reality. Hitherto, years-long immobilisation by growing implants may control the deformity but usually still ends up in a final fusion procedure at the end of growth.
-
Literatur
- 1 Dickson RA. Early Onset Idiopathic Scoliosis. In. Weinstein SL. (ed) The Pediatric Spine. Vol 1. New York, NY: Raven Press Ltd; 1994: 421-429.
- 2 Davies G, Reid L. Effect of scoliosis on growth of alveoli and pulmonary arteries and on right ventricle. Archives of disease in childhood 1971; 46: 623-632. PubMed PMID: 5118050. Pubmed Central PMCID: 1647825.
- 3 Goldberg CJ, Gillic I, Connaughton O. et al. Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine 2003; 28: 2397-2406. PubMed PMID: 14560091.
- 4 Mehta HP, Snyder BD, Callender NN. et al. The reciprocal relationship between thoracic and spinal deformity and its effect on pulmonary function in a rabbit model: a pilot study. Spine 2006; 31: 2654-2664. PubMed PMID: 17077733.
- 5 Nakahara D, Yonezawa I, Kobanawa K. et al. Magnetic resonance imaging evaluation of patients with idiopathic scoliosis: a prospective study of four hundred seventy-two outpatients. Spine 2011; 36: E482-485. PubMed PMID: 20479697.
- 6 Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2012; 21: 64-70. PubMed PMID: 21874626. Pubmed Central PMCID: 3252439.
- 7 Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling. Journal of pediatric orthopedic 2011; 31 (Suppl. 01) Suppl S99-106. PubMed PMID: 21173627. Pubmed Central PMCID: 3086537.
- 8 Koop SE. Infantile and juvenile idiopathic scoliosis. The Orthopedic clinics of North America 1988; 19: 331-337. PubMed PMID: 3282201.
- 9 Pehrsson K, Larsson S, Oden A, Nachemson A. Long-term follow-up of patients with untreated scoliosis. A study of mortality, causes of death, and symptoms. Spine 1992; 17: 1091-1096. PubMed PMID: 1411763.
- 10 Kristmundsdottir F, Burwell RG, James JI. The rib-vertebra angles on the convexity and concavity of the spinal curve in infantile idiopathic scoliosis. Clinical orthopaedics and related research 1985; 205-209. PubMed PMID: 4064407.
- 11 Mehta MH. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. The Journal of bone and joint surgery British volume 1972; 54: 230-243. PubMed PMID: 5034823.
- 12 Karol LA. Early definitive spinal fusion in young children: what we have learned. Clinical orthopaedics and related research 2011; 469: 1323-1329. PubMed PMID: 20957466. Pubmed Central PMCID: 3069259.
- 13 Dubousset J, Herring JA, Shufflebarger H. The crankshaft phenomenon. Journal of pediatric orthopedics 1989; 9: 541-550. PubMed PMID: 2794027.
- 14 Hefti FL, McMaster MJ. The effect of the adolescent growth spurt on early posterior spinal fusion in infantile and juvenile idiopathic scoliosis. The Journal of bone and joint surgery British volume 1983; 65: 247-254. PubMed PMID: 6841390.
- 15 Tis JE, Karlin LI, Akbarnia BA. et al. Early onset scoliosis: modern treatment and results. Journal of pediatric orthopedics 2012; 32: 647-657. PubMed PMID: 22955526.
- 16 Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. The Journal of bone and joint surgery British volum 2005; 87: 1237-1247. PubMed PMID: 16129750.
- 17 Sanders JO, D’Astous J, Fitzgerald M. et al. Derotational casting for progressive infantile scoliosis. Journal of pediatric orthopedics 2009; 29: 581-587. PubMed PMID: 19700987.
- 18 Jalanko T, Rintala R, Puisto V, Helenius I. Hemivertebra resection for congenital scoliosis in young children: comparison of clinical, radiographic, and health-related quality of life outcomes between the anteroposterior and posterolateral approaches. Spine 2011; 36: 41-49. PubMed PMID: 20622749.
- 19 Vitale MG, Gomez JA, Matsumoto H. et al. Variability of expert opinion in treatment of early-onset scoliosis. Clinical orthopaedics and related research 2011; 469: 1317-1322. PubMed PMID: 20824404. Pubmed Central PMCID: 3069263.
- 20 Akbarnia BA, Campbell RM, Dimeglio A. et al. Fusionless procedures for the management of early-onset spine deformities in 2011; what do we know?. Journal of children’s orthopaedics 2011; 5: 159-172. PubMed PMID: 22654977. Pubmed Central PMCID: 3100462.
- 21 Canavese F, Dimeglio A, Volpatti D. et al. Dorsal arthrodesis of thoracic spine and effects on thorax growth in prepubertal New Zealand white rabbits. Spine 2007; 32: E443-450. PubMed PMID: 17632383.
- 22 Karol LA, Johnston C, Mladenov K. et al. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. The Journal of bone and joint surgery American volume 2008; 90: 1272-1281. PubMed PMID: 18519321.
- 23 Rinella A, Lenke L, Whitaker C. et al. Perioperative halo-gravity traction in the treatment of severe scoliosis and kyphosis. Spine 2005; 30: 475-482. PubMed PMID: 15706347.
- 24 Akel I, Yazici M. Growth modulation in the management of growing spine deformities. Journal of children’s orthopaedics 2009; 3: 1-9. PubMed PMID: 19308606. Pubmed Central PMCID: 2656840.
- 25 Campbell Jr RM, Smith MD. Thoracic insufficiency syndrome and exotic scoliosis. The Journal of bone and joint surgery American volume 2007; 89 (Suppl. 01) Suppl 108-122. PubMed PMID: 17272428.
- 26 Campbell Jr RM, Smith MD, Mayes TC. et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. The Journal of bone and joint surgery American volume 2004; 86-A: 1659-1674. PubMed PMID: 15292413.
- 27 Motoyama EK, Deeney VF, Fine GF. et al. Effects on lung function of multiple expansion thoracoplasty in children with thoracic insufficiency syndrome: a longitudinal study. Spine 2006; 31: 284-290. PubMed PMID: 16449900.
- 28 Motoyama EK, Yang CI, Deeney VF. Thoracic malformation with early-onset scoliosis: effect of serial VEPTR expansion thoracoplasty on lung growth and function in children. Paediatric respiratory reviews 2009; 10: 12-17. PubMed PMID: 19203739.
- 29 Campbell Jr RM, Hell-Vocke AK. Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. The Journal of bone and joint surgery American volume 2003; 85-A: 409-420. PubMed PMID: 12637424.
- 30 Zhao Y, Qiu GX, Wang YP. et al. Comparison of initial efficacy between single and dual growing rods in treatment of early onset scoliosis. Chinese medical journal 2012; 125: 2862-2866. PubMed PMID: 22932081.
- 31 Pratt RK, Webb JK, Burwell RG, Cummings SL. Luque trolley and convex epiphysiodesis in the management of infantile and juvenile idiopathic scoliosis. Spine 1999; 24: 1538-1547. PubMed PMID: 10457573.
- 32 McCarthy RE, Sucato D, Turner JL. et al. Shilla growing rods in a caprine animal model: a pilot study. Clinical orthopaedics and related research 2010; 468: 705-710. PubMed PMID: 19693636. Pubmed Central PMCID: 2816750.
- 33 Newton PO, Farnsworth CL, Upasani VV. et al. Effects of intraoperative tensioning of an anterolateral spinal tether on spinal growth modulation in a porcine model. Spine 2011; 36: 109-117. PubMed PMID: 20595923.
- 34 Lavelle WF, Samdani AF, Cahill PJ, Betz RR. Clinical outcomes of nitinol staples for preventing curve progression in idiopathic scoliosis. Journal of pediatric orthopedics 2011; 31 (Suppl. 01) Suppl S107-113. PubMed PMID: 21173612.
- 35 Sankar WN, Skaggs DL, Yazici M. et al. Lengthening of dual growing rods and the law of diminishing returns. Spine 2011; 36: 806-809. PubMed PMID: 21336236.
- 36 Hasler CC, Mehrkens A, Hefti F. Efficacy and safety of VEPTR instrumentation for progressive spine deformities in young children without rib fusions. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2010; 19: 400-408. PubMed PMID: 20041270. Pubmed Central PMCID: 2899763.
- 37 Watanabe K, Uno K, Suzuki T. et al. Risk factors for complications associated with growing-rod surgery for early-onset scoliosis. Spine 2013; 38: E464-8. PubMed PMID: 23370680.
- 38 Akbarnia BA, Cheung K, Noordeen H. et al. Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine 2013; 38: 665-670. PubMed PMID: 23060057.
- 39 Groenefeld B, Hell AK. Ossifications after vertical expandable prosthetic titanium rib treatment in children with thoracic insufficiency syndrome and scoliosis. Spin 2013; 38: E819-823. PubMed PMID: 23532122.