Nuklearmedizin 1988; 27(03): 87-94
DOI: 10.1055/s-0038-1629439
Review Articles
Schattauer GmbH

Radioiodination of Murine Anti-Alphafoetoprotein E.9 Monoclonal Antibody and its F(ab’)2 Fragment for the Diagnosis of Hepatocellular Carcinoma

M. Beyers
1   From the Atomic Energy Corporation of South Africa, Pinetown, South Africa
,
S. Aspinall
2   From the Pretoria, the Medical University of Southern Africa, Pinetown, South Africa
,
J. D. Conradie
3   Pretoria and the Natal Institute for Immunology, Pinetown, South Africa
,
P. J. Fourie
1   From the Atomic Energy Corporation of South Africa, Pinetown, South Africa
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 04. November 1987

Publikationsdatum:
04. Februar 2018 (online)

The high incidence of hepatocellular carcinoma amongst certain population groups of Southern Africa made feasible the investigation of a radiolabeled monoclonal anti-alphafoetoprotein as a radioimmunodiagnostic agent for this disease. This paper reports the preclinical trials with monoclonal anti-alphafoetoprotein E.9 (anti-AFP) and its F(ab’)2 fragment after radiolabelling with 131l. Various radioiodinations were tried. The best results were obtained with the lodogen and Bolton-Hunter methods.1311 from only one of the sources tested gave an 131 l-labelled anti-AFP with meaningful immunoreactivity. It was shown by means of gamma-camera scans and monitoring of radioactivity in individual organs that 131l-anti-AFP and the 131l-anti-AFP F(ab’)2 fragments did not accumulate abnormally in any organ(s) in healthy animals. The correlation in healthy mice of the biodistribution of 125l human IgG to 131 l-anti-AFP, and 125l human IgG to 131l-F(ab’)2 was good. Human hepatoma xenografts in athymic mice showed uptake of131 l-anti-AFP and the 131l-F(ab’)2 fragment. The uptake of 131l-F(ab’)2 was improved by liver background subtraction. There was correlation between circulatory alphafoetoprotein concentrations and tumour uptake of 131l-F(ab’)2 in tumour-bearing athymic mice and a definite relationship was found between tumour size and radiolabelled antibody and the F(ab’)2 fragment. After the biological action of the131 l-anti-AFP and the 131l-F(ab’)2 fragment was known, sterile pyrogen-free consignments were supplied for clinical trials in humans on a regular basis.

Zusammenfassung

Die hohe Inzidenz des hepatozellulärenKarzinoms unter bestimmtenBevölkerungsgruppen des südlichenAfrika ließ die Untersuchung von radioaktivmarkiertem monoklonalemAntialphafetoprotein als Radioimmundiagnostikumfür diese Erkrankungsinnvoll erscheinen. In dieserArbeit wird über präklinische Versuchemit monoklonalem AntialphafetoproteinE.9 (Anti-AFP) und seinesF(ab’)2-Fragments nach Markierungmit 131J berichtet. Verschiedene Methodender Radiojodierung wurdengetestet. Die besten Ergebnisse wurdenmit der Jodogen-Methode unddem Bolton-Hunter-Verfahren erreicht.131J verschiedener Herstellerwurde getestet. Nur 131J aus einer dergeprüften Quellen ergab eine 131J-Anti-AFP-Markierung mit brauchbarerImmunreaktivität. Mit Hilfe vonGamma-Kamera-Szintigrammen undmit Radioaktivitätsmessungen in einzelnenOrganen wurde gezeigt, daß131J-Anti-AFP und das 131J-Anti-AFPF(ab’)2-Fragment sich in keinemOrgan gesunder Tiere abnormal anreicherte.Die Korrelation der Bioverteilungvon 125J-markiertem humanemund mit 125J-markiertem humanemIgG zu 131J-markiertem F(ab’)2 war ingesunden Mäusen gut. MenschlicheHepatom-Xenotransplantationen inathymischen Mäusen zeigten eine Anreicherungdes 131J-markierten Anti-AFP und des 131J-F(ab’)2-Fragments.Die Aufnahme des 131J-F(ab’)2 wurdenach Leberhintergrundsubtraktionbesser dargestellt. Eine Abhängigkeitzwischen Blutalphafetoproteinkonzentrationund dem Tumoruptake von131J-F(ab’)2 in tumortragenden Nacktmäusenund ein bestimmter Zusammenhangzwischen der Tumorgrößeund dem radioaktiv markierten Antikörperund dem F(ab’)2-Fragmenwurde nachgewiesen. Nachdem diebiologische Wirkung des 131J-Anti-AFP und des 131J-F(ab’)2-Fragmentsbekannt war, wurden sterile pyrogenfreieChargen für klinische Prüfungenam Menschen regelmäßig hergestellt.

 
  • REFERENCES

  • 1 Aden D P, Fogel A, Plotkin S, Damjanov I, Knowles B. Controlled synthesis of HBsAg in a differentiated human liver carcinomaderived cell line. Nature, London 1970; 282: 615-6.
  • 2 Alexander J J, Bey E M, Geddes E W, Lecatsas G. Establishment of a continuously growing cell line from primary carcinoma of the liver. S Afr Med J 1976; 50: 2124-8.
  • 3 Baldwin R M. Chemistry of radioiodine. Int J Appl Radiat Isot 1986; 37: 817-21.
  • 4 Ballou B, Reiland J, Levine G, Knowles B, Hakala T R. Tumor location using F(ab’)2 |i from a monoclonal IgM antibody: Pharmakokinetics. J Nucl Med 1985; 26: 283-92.
  • 5 Bassendine M F, Wright N A, Thomas H C, Sherlock S. Growth characteristics of a-foetoprotein-secreting human hepatocellular carcinoma in athymic (nude) mice. Clin Sei 1983; 64: 643-8.
  • 6 Beaumier P L, Krohn K A, Carrasquillo J A. et al. Melanoma localization in nude mice with monoclonal Fab against p 97. J Nucl Med 1985; 26: 1172-9.
  • 7 Bernhard M I, Hwang K M, Foon K A. et al. Localization of ‘“In-and l25I-labelled monoclonal antibody in guinea pigs bearing Line 10 hepatocarcinoma tumors. Cancer Res 1983; 43: 4429-33.
  • 8 Bolton A E. Experimental protocols for the radioiodination of proteins and other compounds. In: Radioiodination Techniques, Review 18. Amersham. England: The Radiochemical Centre; 1977: 45-56.
  • 9 Bolton A E, Hunter W M. The labelling of proteins to high specific radioactivities by conjugation to a 125T-containing acylating agent. Biochem J 1973; 133: 529-39.
  • 10 British Pharmacopoeia 1980. II Appendix XIV K, Test for Pyrogens, and L, Test for Abnormal Toxicity Method B. London: Her Majesty’s Stationary Office; 1980
  • 11 Conradie J D, Gray R, Mbhele B EL. Serum alpha-fetoprotein determination by ELISA. S Afr Med J 1980; 58: 169-71.
  • 12 Contreras M A, Bale W F, Spar I L. Iodine monochloride (ICI) iodination techniques. In: Langone J J, Van Vunakis H. eds. Methods in Enzymology. New York: Academic Press; 1983. 92(E): 277-94.
  • 13 Els M C, Govender M, Marimuthu T, Bubb M O, Conradie J D. Mouse monoclonal anti-HBs and its use in the screening of donated blood by Elisa. Vox Sang 1984; 64: 165-74.
  • 14 Ey P L, Prowse S J, Jenkin C R. Isolation of pure IgGl, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochem 1978; 15: 429-36.
  • 15 Fraker P J, Speck Jr J C. Protein and cell membrane iodinations with a sparingly soluble chloroamide, l,3,4,6-tetrachloro-3a, 6a-diphenylglycoluril. Biochem Biophys Res Comm 1978; 80: 849-57.
  • 16 Goldenberg D M, DeLand F, Kim E. et al. Use of radiolabelled antibodies to car-cinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 1978; 298: 1384-8.
  • 17 Greenwood F C, Hunter W M, Glover J S. The preparation of 131 I-labelled human growth hormone of high specific radioactivity. Biochem J 1963; 89: 114-22.
  • 18 Hirai H, Tsukada Y, Hara A. et al. Purification of specific antibody to a-foetoprotein and its immunological effect on cancer cells. J Chromatogr 1981; 215: 195-210.
  • 19 Kew M C. Alpha-fetoprotein. In: Read A E. ed. Modern Trends in Gastroenterology. London: Butterworths, 1975: 91.;
  • 20 Kew M C. Hepatocellular cancer in Southern Africa. In: Remmer H, Bolt H M, Banash P, Popper H. eds. Primary Liver Tumours. Lancaster: MTP Press; 1978: 179.
  • 21 Knowles B, Howe C, Aden D P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980; 209: 497-9.
  • 22 Larson S M. Radiolabeled monoclonal antitumor antibodies in diagnosis and therapy. J Nucl Med 1985; 26: 538-45.
  • 23 Lin J H, Tong MJ, Stevenson D. A new hepatocellular cell line secreting HBsAg and alphafoetoprotein. In: Vyas G, Dienstag J, Hoofnagle J. eds. Viral hepatitis and liver diseases. Orlando: Grune and Stratton; 1980: 673.
  • 24 Lucka B, Siuda A. Preparation of Bolton and Hunter’s reagent for labelling proteins with iodine-125. J Labelled Comp Radiopharm 1978; 15: 495-7.
  • 25 Madon R J, Finley E, Flint D J. Effect of storage temperature on the stability of iodinated bovine and rat growth hormones. Lab Pract 1984; 33: 115-6.
  • 26 Markwell M AK. A new solid-state reagent to iodinate proteins. Anal Biochem 1982; 125: 427-32.
  • 27 McConahey P J, Dixon F J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy 1966; 29: 185-9.
  • 28 Millar W T, Smith J FB. Protein iodination using Iodogen® . Int J Appl Radiat Isot 1983; 34: 639-41.
  • 29 Morrison R T, Lyster D M, Alcorn L. et al. Radioimmunoimaging with 99mTc monoclonal antibodies: Clinical studies. Int J Nucl Med Biol 1984; 11: 184-8.
  • 30 Muto T. Determination of impurity nuclides in radiopharmaceuticals. Tokyo-Toritsu Aisotopu Sogo Kenkyusho Nempo 1985; 1984: 4-8 Abstract in INIS SDI no. 081482 17 (23) 1986. Search date: 87.1.8.
  • 31 Richardson A P, Mountford P J, Baird A C. et al. An improved Iodogen method of labelling antibodies with 123I. Nucl Med Commun 1986; 07: 355-62.
  • 32 Silberring J, Golda W, Szybinski Z. A universal and simple chloramine T version for hormone iodination. Int J Appl Radiat Isot 1982; 33: 117-9.
  • 33 Siuda A, Lucka B. Determination of inorganic radioiodine in solutions of 125I-labelled proteins. J Labelled Comp Radiopharm 1981; 18: 915-9.
  • 34 Springolo E. Private Communication. Department of Nuclear Medicine, University of the Witwatersrand, Johannesburg, South Africa.