Nuklearmedizin 1988; 27(05): 188-194
DOI: 10.1055/s-0038-1629449
Review Articles
Schattauer GmbH

Deconvolution Analysis of Renograms Obtained with Simultaneously Administered 99mTc-DTPAand 131l-Hippuran

V. Kempi
1   From the Department of Radiophysics, Sjukhuset, Östersund, Sweden
› Author Affiliations
Further Information

Publication History

Received: 15 January 1988

Publication Date:
04 February 2018 (online)

Seventy patients were studied with a dual radionuclide technique. The conventional renograms and the blood curve were subjected to deconvolution analysis using the matrix algorithm method, and the following curve data calculated from the retention functions: absolute and relative amplitudes, minimum time of the retention function, maximum time of the retention function and mean transit time. The findings with the two radiopharmaceuticals 99mTc-DTPA and 131l-Hippuran were compared under normal and pathological conditions. The correlations between the data with 99mTc-DTPA and those with 131l-Hippuran were highly significant (p <0.01). So was the correlation between the absolute amplitude of the retention curve and the rate of uptake based on the corresponding renogram (p <0.01). Due to the difference in the renal handling of the two tracers, longer maximum times were obtained with 99mTc-DTPA. The mean transit times were also longer with 99mTc-DTPA, except in kidneys with parenchymal insufficiency. The highest amplitudes were found in normal kidneys, while the lowest values were observed in parenchymal insufficiency. In the group with acute ureteral obstruction, the mean transit times tended to be increased. The maximum times were even more increased. With both tracers it is possible to distinguish between the three groups of renal conditions studied here: Normal, parenchymal insufficiency, and acute ureteral obstruction.

Zusammenfassung

70 Patienten wurden mit einer Doppelradioisotopentechnik untersucht. Die konventionellen Renogramme und die Blutkurve wurden einer Dekonvolutionsanalyse nach dem Matrixalgorithmus unterworfen. Folgende Größen wurden aus der Retentionskurve berechnet: Absolute und relative Amplituden, minimale und maximale Zeit der Retention und die mittlere Transitzeit. Die Ergebnisse mit den zwei Radiopharmazeutika 99mTc-DTPA und 131J-Hippuran wurden unter normalen und pathologischen Bedingungen miteinander verglichen. Die Korrelationen zwischen den 99mTc-DTPA-und den 131J-Hip-puran-Daten waren hochsignifikant (p <0,01); ebenso die Korrelation zwischen der absoluten Amplitude der Retentionskurve und der Aufnahmerate basierend auf dem entsprechenden Renogramm (p <0,01). Aufgrund der unterschiedlichen renalen Kinetik der zwei Tracer ergaben sich längere Maximalzeiten mit 99mTc-DTPA. Ebenso waren die mittleren Transitzeiten mit 99mTc-DTPA länger, ausgenommen in Nieren mit parenchymaler Insuffizienz. Die höchsten Amplituden wurden in normalen Nieren gefunden, während die niedrigen Werte bei parenchymaler Insuffizienz beobachtet wurden. In der Gruppe mit akuter Ureterobstruktion war eine Tendenz zur Verlängerung der mittleren Transitzeiten festzustellen. Die Maximalzeiten waren nochmals verlängert. Mit beiden Tracern war es möglich, zwischen den drei Gruppen renaler Zustände zu unterscheiden, die hier untersucht wurden: Normale, parenchymale Insuffizienz und akute Ureterobstruktion.

 
  • REFERENCES

  • 1 Alderson P O, Douglass K H, Mendenhall K G. et al. Deconvolution analysis in radionuclide quantitation of left-to-right cardiac shunts. J Nucl Med 1979; 20: 502-6.
  • 2 Becker G, Tan A H. Correlations between cardiovascular function and the appearances of the radioisotope renogram curves. In: Timmermans and Merchie, eds. Radioisotopes in the diagnosis of diseases of the kidneys and the urinary tract. Amsterdam: Excerpta Medica Foundation; 1969: 467-71.
  • 3 Birge S J, Peck W A, Berman M, Whedon G D. Study of calcium absorption in man: a kinetic analysis and physiological model. J Clin Invest 1969; 48: 1705-13.
  • 4 Britton K E. Dynamic radionuclide imaging. Br Med Bull 1980; 36: 215-22.
  • 5 Carlsen O, Kvinesdal B, Nathan E. Quantitative evaluation of iodine-123 hippuran gamma camera renography in normal children. J Nucl Med 1986; 27: 117-27.
  • 6 Diffey B L, Hall F M, Corfield J R. The 99mTc-DTPA dynamic renal scan with deconvolution analysis. J Nucl Med 1976; 17: 352-5.
  • 7 Diffey B L, Hall F M, Piepsz A, Erbsmann F. Renal deconvolution and the poor injection. Eur J Nucl Med 1978; 03: 145-6.
  • 8 Fawdry R M, Gruenewald S M, Collins L T, Roberts A J. Comparative assessment of techniques for estimation of glomerular filtration rate with 99mTc-DTPA. Eur J Nucl Med 1985; 11: 7-12.
  • 9 Fleming J S, Goddard B A. A technique for the deconvolution of the renogram. Phys Med Biol 1974; 19: 546-9.
  • 10 Gonzalez-Fernandes J M. Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ Res 1962; 10: 409-28.
  • 11 Gruenewald S M, Collins L T. Renovascular hypertension: quantitative renography as a screening test. Radiology 1983; 149: 287-91.
  • 12 Hosain F, Marsaglia G, Finch C A. Blood ferrokinetics in normal man. J Clin Invest 1967; 46: 1-9.
  • 13 Kempi V, Persson B R R. Evaluation of renal function parameters with simultaneously administered 99mTc-DTPA and ‘‘‘1-Hippuran. Eur J Nucl Med 1983; 08: 65-71.
  • 14 Kempi V. A Fortran program for ranking and for calculation of Spearman’s correlation coefficient. Comp Methods Progr Biomed 1985; 21: 123-5.
  • 15 Kempi V. A Fortran program for deconvolution analysis using the matrix algorithm method with special reference to renography. Comp Methods Progr Biomed 1987; 24: 107-16.
  • 16 Knesaurek K, Spaventi S. Comparison of three deconvolution techniques in renography. Eur J Nucl Med 1984; 09: 254-6.
  • 17 Larsson I, Lindstedt E, Ohlin P, Strand S-E, White T. A scintillation camera technique for quantitative estimation of separate kidney function and its use before nephrectomy. Scand J Clin Lab Invest 1975; 35: 517-24.
  • 18 de Lima J J P. Dependence of an individual renogram on the other kidney through the blood activity, shown by convolution. Eur J Nucl Med 1980; 05: 469-70.
  • 19 Norman N. Effective plasma flow of the individual kidney. Determination on the basis of the (‘ ‘‘l)Hippuran renogram. Scand J Clin Lab Invest 1972; 30: 395-403.
  • 20 Reeve J, Crawley J C W. Quantitative radioisotope renography: the derivation of physiological data by deconvolution analysis using a single-injection technique. Clin Sei Mol Med 1974; 47: 317-30.
  • 21 Reeve J, Crawley J C W, Goldberg A D, Kennard C, Kenny D, Smith I K. Abnormalities of renal transport of sodium o-(131I)iodo-hippurate (Hippuran) in essential hypertension. Clin Sei Mol Med 1978; 55: 241-7.
  • 22 Siegel S. Nonparametric statistics for behavioral sciences. New York: McGraw Hill; 1956: 202-13.
  • 23 SPSS Inc., SPSS/PC + ™ for the IBM PC/ XT/AT, Chicago. 1986
  • 24 Szabo Z, Vosberg H, Sondhaus C A, Feinendegen L E. Model identification and estimation of organ-function parameters using radioactive tracers and the impulse-response function. Eur J Nucl Med 1985; 11: 265-74.
  • 25 Valentinuzzi M E, Volachec E MMontaldo. Discrete deconvolution. Med Biol Eng 1975; 13: 123-5.
  • 26 Whitfield H N, Britton K E, Hendry W F, Nimmon C C, Wickham J E A. The distinction between obstructive uropathy and nephropathy by radioisotope transit times. Br J Urol 1978; 50: 433-6.
  • 27 Zierler K L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965; 16: 309-21.