Nuklearmedizin 1989; 28(01): 17-20
DOI: 10.1055/s-0038-1629464
Original Articles
Schattauer GmbH

Verlust von hochaffinen Prostacyclin-Bindungsstellen bei Patienten mit Morbus Basedow

Loss of High-Affinity Prostacyclin Binding Sites in Patients with Graves’ Disease
Irene Virgolini
1   Aus der Atheroskleroseforschungsgruppe (ASF) Wien, der Nuklearmedizinischen Abteilung der II. Medizinischen Universitätsklinik und der Chirurgischen Abteilung, Kaiserin- Elisabeth-Spital, Wien, Österreich
,
K. Weiss
1   Aus der Atheroskleroseforschungsgruppe (ASF) Wien, der Nuklearmedizinischen Abteilung der II. Medizinischen Universitätsklinik und der Chirurgischen Abteilung, Kaiserin- Elisabeth-Spital, Wien, Österreich
,
M. Hermann
1   Aus der Atheroskleroseforschungsgruppe (ASF) Wien, der Nuklearmedizinischen Abteilung der II. Medizinischen Universitätsklinik und der Chirurgischen Abteilung, Kaiserin- Elisabeth-Spital, Wien, Österreich
,
H. Sinzinger
1   Aus der Atheroskleroseforschungsgruppe (ASF) Wien, der Nuklearmedizinischen Abteilung der II. Medizinischen Universitätsklinik und der Chirurgischen Abteilung, Kaiserin- Elisabeth-Spital, Wien, Österreich
,
R. Höfer
1   Aus der Atheroskleroseforschungsgruppe (ASF) Wien, der Nuklearmedizinischen Abteilung der II. Medizinischen Universitätsklinik und der Chirurgischen Abteilung, Kaiserin- Elisabeth-Spital, Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen: 18. April 1988

in revidierter Form: 11. Juli 1988

Publikationsdatum:
05. Februar 2018 (online)

Prostacyclin (PGI2) mediates like TSH its cellular effects through the interaction with specific binding sites associated with the adenylate cyclase-cAMP-system. Binding of PGI2 and the generation of cAMP induced by PGI2 was evaluated in thyroid tissue obtained intraoperatively from euthyroid and hyperthyroid patients with diffuse normofollicular colloid struma. Transformation of the binding data according to Scatchard revealed heterogeneity of the PGI2 binding sites in the tissue of euthyroid patients: the high-affinity binding sites were calculated to be 0.68 ± 0.18 pmol/mg protein (Ka = 16.2 ± 9.1 nM) and the low-affinity binding sites to be 5.4 ± 1.6 pmol/mg protein (Ka = 151 ± nM). In contrast, in the hyperthyroid patients the low-affinity binding sites were not demonstrable and the high-affinity sites were significantly (p <0.001) reduced (0.17 ± 0.05 pmol/mg protein, Ka = 83.5 ± 19.6 nM). The competition of the agonist for the PGI2 sites in hyperthyroid patients was significantly (p <0.005) diminished (IC-50-values: 0.98 ± 3.1 vs 46.9 ± 12.1 μM). PGI2 stimulated cAMP-production in a dose-dependent manner. However, the basal value was significantly lower also in the hyperthyroid patients (p <0.001). The evidence of reduced PGI2 sites as well as reduced PGI2-induced cAMP production in the thyroid gland of patients with Graves’ disease may indicate an important role for PGI2 to play in the modulation of thyroid cell function.

Zusammenfassung

Prostacyclin (PGI2) mediiert wie TSH seine zellulären Effekte über die Vermittlung von spezifischen Rezeptoren, die mit dem Adenylatzyklase- cAMP-System assoziiert sind. In der vorliegenden Studie wurden das Bindungsverhalten und die cAMP-Bildung im intraoperativ entnommenen Schilddrüsengewebe von euthyreoten und hyperthyreoten Patienten mit diffuser normofollikulärer Kolloidstruma untersucht. Die Transformierung der Bindungsdaten nach Scatchard zeigte bei den euthyreoten Patienten eine Heterogenität der PGI2-Bindungsstellen an: die Zahl der hochaffinen Bindungsstellen betrug 0,68 ± 0,18 pmol/ mg Protein (Ka = 16,2 ±9,1 nM), die der niederaffinen 5,4 ± 1,6 pmol/mg Protein (Ka = 151 ± 43,1 nM). Im Vergleich dazu fanden sich bei hyperthyreoten Patienten keine niederaffinen PGI2-Bindungsstellen und ein signifikanter Verlust von hochaffinen Bindungsstellen (p <0,001; 0,17 ± 0,05 pmol/mg Protein, Ka = 83,5 ± 19,6 nM). Auch die Kompetition des Agonisten um die PGI2-Bindungsstellen war bei hyperthyreoten Patienten im Vergleich zu euthyreoten Patienten signifikant (p <0,005) erniedrigt (IC-50-Werte: 0,98 ± 3,1 vs 46,9 ± μM). PGI2 stimulierte konzentrationsabhängig die cAMP-Bildung gegenüber dem Basalwert, welcher bei den hyperthyreoten Patienten ebenfalls signifikant niedriger war (p <0,001). Der Nachweis einer verminderten PGI2-Rezeptorenzahl und PGI2-induzierten cAMP-Bildung in der Schilddrüse bei Patienten mit M. Basedow könnte bedeuten, daß PGI2 eine bedeutende Rolle in der Modulation der Schilddrüsenfunktion ausübt.

 
  • LITERATUR

  • 1 Boeynaemes J M, Galand N, Dumont J E. In vitro inhibition of prostaglandin synthesis by antithyroid drugs. Biochem Pharmacol 1979; 28: 3195-8.
  • 2 Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analyt Biochem 1976; 72: 248-54.
  • 3 Granström E, Kumlin M. Assay of thromboxane production in biological systems: reliability of TXB2 versus 11-dehydro-TXB2 as targets for measurement. Adv Prostagl Thrombo Leucotr Res 1987; 17: 587-94.
  • 4 Hall M, Strange P G. The use of a prostacyclin analogue, 3H-iloprost, for studying prostacyclin-binding sites on human platelets and neuronal hybrid cells. Biosciencc Rep 1984; 04: 941-8.
  • 5 Kazama Y, Kanemaru Y, Noguchi T, Onaya T. Circulating prostacyclin and thromboxane in patients with Graves’ disease. Prostagl Leucotr Med 1987; 26: 75-84.
  • 6 Nakao J, Cahn W, Murota S, Orimo H. Triiodothyronine stimulates prostacyclin production by rat aortic smooth musclc cclls in culturc. Atherosclerosis 1981; 39: 439-45.
  • 7 Noguchi T, Kazama Y, Kanemaru Y, Onaya T. The effect of thyroxine and mcthimazolc treatment on the synthesis of prostacyclin (PGL) in the rat. Prostaglandins 1985; 30: 553-61.
  • 8 Onaya T, Miyakawa M, Makiuchi M, Furihata R. Altered responsiveness to thyrotropin in thyroid slices of Graves’ disease preoperatively treated with excess iodide. J Clin Endocrinol Metab 1978; 47: 405-9.
  • 9 Patrono C, Ciabattoni G, Pugliese F, Pierucci I A, Blair I A, Fitzgerald G A. Estimated rate of thromboxane secretion into the circulation of normal humans. J Clin Invest 1986; 77: 590-4.
  • 10 Rapaport B, Pillarisetty R J, Herman E A, Congo E G. Evidence for prostaglandin production by human lymphocytes during culture with human thyroid cells in monolayer: a possible role for prostaglandins in the pathogenesis of Graves’ disease. Biochim Biophys Res Comm 1977; 77: 1245-50.
  • 11 Takasu N, Kubota T, Ujie A, Hamano S, Yamada T, Shimizu Y. Augmentation of prostacyclin and depression of PGE2, PGF and thromboxane A2 by TSH in cultured porcine thyroid cells. An important role of prostacyclin in maintaining thyroid cell function. FEBS Letters 1981; 126: 301-4.
  • 12 Town M H, Schillinger E, Speckenbach A, Prior G. Identification and characterization of a prostacyclin-like receptor in bovine coronary arteries using a specific and stable prostacyclin analogue, iloprost, as radioactive ligand. Prostaglandins 1984; 24: 61-72.
  • 13 Virgolini I. Characterization of PGL-binding sites in normal and pathologically altered human thyroid tissue. In: Eicosanoids and fatty acids. Sinzinger H, Schrör K, Peskar B. (eds). Vol. 3 1-90. Wien: Facultas; 1982
  • 14 Yamamoto M, Rapoport B, Clark O H, Feingold K. Studies on the pathophysiological role of thyroidal prostaglandin E1 in Graves’ disease. Horm Metab Res 1980; 12: 256-60.