RSS-Feed abonnieren
DOI: 10.1055/s-0038-1629508
The Fate of 131I-17-lodohepta-decanoic Acid During Lactate Loading: Its Oxidation is Strongly Inhibited in Favor of its Esterification
A Radiochemical Study in the Canine HeartPublikationsverlauf
Received:
08. Mai 1989
14. August 1989
Publikationsdatum:
04. Februar 2018 (online)
The influence of lactate loading on fatty acid metabolism (pH = 7.4) by the normal canine heart was investigated radiochemically using the radioiodinated fatty acid 131I-17-iodoheptadecanoic acid (131I-17-HDA). Fatty acid metabolism was studied during control conditions (n = 8) and after lactate loading (n = 7). In the canine heart total myocardial131I-17-HDA radioactivity (uptake) was not changed during the lactate intervention. The oxidation decreased fivefold (measured as free 131I-iodide ion) from 70% to 14% (p < 0.0001, Student’s t- test). Thin-layer chromatography of cardiac lipids demonstrated that the nonoxidized 131I-17-HDA was mainly stored in the triglycerides and phosphoglycerides. These results suggest that lactate inhibits cardiac 131I-HDA oxidation.
Zusammenfassung
Der Einbau von 131J-17-Jod-Hepta- dekansäure (131J-17-HDA) wurde am gesunden Hundeherz unter Kontroll- bedingungen (n = 8) und nach Zugabe von Laktat (n = 7) untersucht. Der Gesamtwert der myokardialen 131J-17- HDA-Aufnahme war unter Laktatinfusion unverändert. Die Oxidation verringerte sich um das Fünffache (gemessen am freien 131J-Jodid), nämlich von 70 auf 14% (p <0,0001). Die Dünnschicht-Chromatographie der myokardialen Lipide zeigte, daß nicht- oxidierte 131J-17-HDA hauptsächlich in Triglyzerid und die Phosphorglyzeride eingebaut wurde. Diese Ergebnisse weisen auf eine Laktat-vermittelte Inhibition der Oxidation von 131J-17- HDA hin.
-
REFERENCES
- 1 Bielefeld D R, Vary T C, Neely J R. Inhibition of carnitine palmitoyl-Co-A transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol 1985; 17: 619-25.
- 2 Bremer J, Osmundson H. Fatty acid oxidation and its regulation. In: Numa S. ed. Fatty acid oxidation and its regulation. Amsterdam – New York – Oxford: Elsevier; 1984: 113-54.
- 3 Dudczak R, Kletter K, Frischauf H. et al. The use of 121I-labeled heptadecanoic acid (HDA) as metabolic tracer: a preliminary report. Eur J Nucl Med 1984; 09: 81-5.
- 4 Duwel C M B, Visser F C, Eenige van M J, Van der Lugt HAM, Roos J P. The influence of glucose on the myocardial time- activity curve during 17-iodo-123 heptadecanoic acid scintigraphy. Nucl Med Comm 1987; 08: 207-15.
- 5 Duwel C M B, Visser F C, Eenige van M J, Westera G, Roos J P. The influence of lactate and dipyridamole on myocardial fatty acid metabolism in man, traced with 123I-17-iodo heptadecanoic acid. Nucl-Med 1990; 29: 28-34.
- 6 Eenige van M J, Visser F C, Duwel C M B. et al. Comparison of 17-1-131 heptadecanoic acid kinetics from externally measured time activity curves and from serial myocardial biopsies in an open-chest canine model. J Nucl Med 1988; 29: 1934-42.
- 7 Liedke A J. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981; 23: 321-36.
- 8 Mulder C, Schouten J A, Popp-Snijders C. Determination of free fatty acids: a comparative study of the enzymatic versus the gas chromatographic and the colorimetric method. J Clin Chem Clin Biochem 1983; 21: 823-7.
- 9 Neely J R, Rovetto M J, Oram J F. Myocardial utilization of carbohydrates and lipids. Prog Cardiovasc Dis 1972; 15: 289-329.
- 10 Newsholme E H, Challis R H J, Crabtree B. Substrate cycles: their role in improving sensitivity in metabolic control. In: Ochs R S, Hanson R W, Hull J. eds. Metabolic regulation. Amsterdam – New York – Oxford: Elsevier; 1985
- 11 Oram J F, Wenger J I, Neely J R. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem 1975; 250: 73-8.
- 12 Otto C A, Brown L E, Wieland D M, Beierwaltes W H. Radioiodinated fatty acids for myocardial imaging: effects of chain length. J Nucl Med 1981; 22: 613-8.
- 13 Reske S N, Schön S, Schmitt W. et al. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpenta- decanoic acid (IPPA) 1-123. Eur J Nucl Med 1986; 12 (Suppl): 27-31.
- 14 Robinson G D, Lee A W. Radioiodinated fatty acids for heart imaging: iodine monochloride addition compared with iodide replacement labeling. J Nucl Med 1975; 16: 17-21.
- 15 Rose C P, Goreski C A. Constraints on the uptake of labeled palmitate by the heart. Circ Res 1977; 41: 534-45.
- 16 Sobel B E. Positron tomography and myocardial metabolism: an overview. Circulation (Suppl. 04) 1985; 72: 22-30.
- 17 Spector A A. Influence of pH of the medium on free fatty acid utilization by isolated mammalian cells. J Lipid Res 1969; 10: 207-15.
- 18 Spitzer J J. Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol 1974; 226: 213-7.
- 19 Taegtmeyer H. Principles of fuel metabolism in heart muscle. In: de Jong J W. ed. Myocardial energy metabolism. Dordrecht – Boston – Lancaster: Martinus Nijhoff; 1988: 17-34.
- 20 Van der Vusse G J, Reneman R S. Glycogen and lipids (endogenous substrates). In: Drake A JHolland, Noble M I M. eds. Cardiac metabolism. Chichester – New York – Brisbane – Toronto – Singapore: John Wiley and Sons; 1983: 215-37.
- 21 Visser F C, Eenige van M J, Westera G. et al. Metabolic fate of radioiodinated heptadecanoic acid in the normal canine myocardium. Circulation 1985; 72: 565-71.
- 22 Westera G, Van der Wall E E, Heidendal G A K, van den Bos G C. A comparison between terminally radioiodinated hexade- canoic acid (*I-HA) and 201-Tl-thallium chloride in the dog hearts. Eur J Nucl Med 1980; 05: 339-43.
- 23 Woodcock E A, Schmauk White L B, Smith McLeod J K. Stimulation of phosphatidyl- inositol metabolism in the isolated perfused rat heart. Circ Res 1987; 61: 625-31.