Nuklearmedizin 1990; 29(06): 236-245
DOI: 10.1055/s-0038-1629538
Übersichtsartikel - Review Articles
Schattauer GmbH

Pathomechanisms of the Cerebral and Myocardial Glucose Metabolism[*]

W. H. Knapp
1   From the Institut für Nuklearmedizin, Herzzentrum Nordrhein-Westfalen, Bad Oeynhausen, Universitätsklinik der Ruhr-Universität Bochum, FR Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. Juli 1990

Publikationsdatum:
04. Februar 2018 (online)

 

* Presented in part at the Symposium on PET and SPECT to Diagnose Coronary Heart Disease, Brain Disease and Malignant Tumors, Aachen, October 1989.


 
  • References

  • 1 Ackcrmann R H, Alport N M, Corrcia J A. et al. Importance of monitoring mctabolic function in assessing the severity of a stroke insult (CBF: An epiphenomenon?). J Ccrcb Blood Flow Metab 1981; 01 (Suppl. 01) S502-3.
  • 2 Ackermann R H, Alport N M, Davis S M. et al. Positron emission tomography of stroke patients. In: Heiss W D, Phelps M E. eds. Positron emissions tomography of the brain. New York: Springer; 1983: 113-9.
  • 3 Ackermann R H, Corrcia J A, Alpert N M. et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygcn- 15. Arch Neurol 1981; 38: 537-43.
  • 4 Alavi J B, Alavi A, Chawluk J. et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988; 62: 1074-8.
  • 5 Astrup J. Energy-requiring cell functions in the ischemic brain: their critical supply and possible inhibition in protective therapy. J Ncurosurg 1982; 56: 482-97.
  • 6 Baron J C, Bousser M G, Comar D, Soussaline F, Castaigne P. Non-invasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Eur J Neurol 1981; 20: 273-84.
  • 7 Baron J C, Comar D, Bousser M G. et al. Patterns of CBF and oxygen extraction fraction (EO2) in hemispheric infarcts: A tomographic study with 15O continuous inhalation technique. Acta Neurol Scand 1979; 60 (Suppl. 72) 324-5.
  • 8 Baron J C, Lebrun-Grandie P, Collard P. et al. Non-invasive measurement of blood flow, oxygen consumption and glucose utilization in the same brain locus in man by positron emission tomography. J Nucl Med 1982; 23: 391-9.
  • 9 Baron J C, Rougcmont D, Samson Y. et al. The local interrelationships of cerebral oxygen consumption and glucose utilization in normals and in ischemic stroke patients. In: Greitz T. et al. eds. The with positron emission tomography. New York: Raven Press; 1985: 377-85.
  • 10 Baron J C, Rougemont D, Soussaline F. et al. Positron tomography investigation in humans of the local coupling among CBF, oxygen consumption and glucose utilization. J Ccreb Blood Flow Metab 1983; 03 (Suppl. 01) S242-3.
  • 11 Bolli R, Jeroudi M O, Patel B S. et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of repcrfusion - Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 1989; 65: 607-22.
  • 12 Bolli R, Zhu W X, Thornby J I, O’Neill P G, Roberts R. Time-course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 1988; 254: H102-14.
  • 13 Bousser M G, Baron J C, Iba-Zizen M T. et al. Migrainous cerebral infarction: a tomographic study of cerebral blood flow and oxygen extraction fraction with the oxygen-15 inhalation technique. Stroke 1980; 11: 145-8.
  • 14 Braunwald E, Kloner R A. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146-9.
  • 15 Brunken R, Schwaiger M, Grover-McKay M. et al. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987; 10: 557-67.
  • 16 Buell U, Stirner H, Braun H, Kreiten K, Ferbert A. SPECT with Tc-99m-HMPAO and Tc-99m-pertechnetate to assess regional cerebral blood flow (rCBF) and blood volume (rCBV). Preliminary results in cerebrovascular disease and interictal epilepsy. Nucl Med Comm 1987; 08: 519-24.
  • 17 Burton A C. Physiology and biophysics of the circulation. Chicago: Year Book Medical Publishers; 1965
  • 18 Buxton D B, Schwaiger M, Vaghaiwalla FMody. et al. Regional abnormality of oxygen consumption in rcperfused myocardium assessed with (1 - 11C) acetate and positron emission tomography. Am J Cardiac Imaging 1989; 03: 276-87.
  • 19 Camici P, Araujo L, Spinks T. et al. Myocardial glucose utilization in ischemic heart disease: Preliminary results with F18- fluorodeoxyglucose and positron emission tomography. Eur Heart J 1986; 07: 19-23 (Suppl C).
  • 20 Camici P, Araujo L I, Spinks T. et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986; 74: 81-8.
  • 21 Celesia G, Polcyn R, Holden J. et al. 18-Ffluoromethane positron emission tomography determination of regional cerebral blood flow in cerebral infarction. J Cereb Blood Flow Metab 1983; 03 (Suppl. 01) S23-4.
  • 22 Charlat M L, O’Neill P G, Hartley C J. Roberts R, Bolli R Prolonged abnormalities of left ventricular diastolic wall thinning in the “stunned” myocardium in conscious dogs: Time-course and relation to systolic function. J Am Coll C’ardiol 1989; 13: 185-94.
  • 23 Chatelain P, Papagcorgiou I, Luthy P. et al. Free fatty acid metabolism in “stunned” myocardium. Basic Res Cardiol 1987; 82 (Suppl. 01) 169-76.
  • 24 Cornblath M, Randlc P J, Parmeggiani A, Morgan H E. Regulation of glycogenolysis in muscle: Effects of glucogen content and Phosphorylase activity in the perfused rat heart. J Biol Chcm 1963; 238: 1592-7.
  • 25 Dastur D K, Lane M H, Hansen D B. et al. Effects of aging on cerebral circulation and metabolism in man. In: Birrcn JE. et al. eds. Human aging: A biological and behavioral study. Washington: U.S. Government Printing Office; 1963: 59-78.
  • 26 Depresseux J C, Granck G, Sadzot B. Regional cerebral blood flow and oxygen uptake rate in human focal epilepsy. In: Blady-Moulinier M, Ingvar D H, Meldrum B S. eds. Current problems in epilepsy. London: John Libby; 1984: 76-81.
  • 27 Di Chiro G, DcLaPaz R L, Brooks R A. et al. Glucose utilization of cerebral gliomas measured by 18F fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-9.
  • 28 Di Chiro G. Positron emission tomography using (18F)fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 1986; 22: 360-71.
  • 29 Di Chiro G, Brooks R A, Patronas N J. et al. Issues in the in vivo measurement of glucose metabolism of human CNS tumors. Ann Neurol 1984; 15 (Suppl. 01) S138-46.
  • 30 Di Chiro G, Brooks R A, Sokoloff L. et al. Glycolytic rate and histologic grade of human cerebral gliomas: A study with (18F)fluorodeoxyglucose and positron emission tomography. In: Heiss W D, Phalps M E. eds. Positron emission tomography of the brain. New York: Springer; 1983: 182-91.
  • 31 Di Chiro G, DeLaPaz R, Smith B. et al. 18F - 2-Fluoro-2-deoxy-glucose positron tomography of human cerebral gliomas. J Ccreb Blood Flow Metab 1981; 01 (Suppl. 01) 11-2.
  • 32 Doyle W K, Budinger T F, Valk P E. et al. Differentiation of cerebral radiation necrosis from tumor recurrence by (18F)FDG and 82Rb positron emission tomography. J CAT 1987; 11: 563-70.
  • 33 Drake A J, Haines J R, Noble M I M. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 1980; 14: 65-72.
  • 34 Eckenhoff J E, Hafkenschiel J H, Landmesser C M. et al. Cardiac oxygen metabolism and control of the coronary circulation. Am J Physiol 1947; 149: 634.
  • 35 Feigl E O. The coronary circulation. In: Ruch T C, Patton H D. eds. Physiology and biophysics II. 20th ed. Philadelphia: Saunders; 1974: 254.
  • 36 Finklcstein S, Alpert N M, Ackermann R H. et al. Positron imaging of the normal brain - Regional patterns of cerebral blood flow and metabolism. Trans Am Neurol Assoc 1980; 105: 8-10.
  • 37 Finnerty F A, Witkin L, Fazekas J F. Cerebral hemodynamics during cerebral ischemia induced by acute hypotension. J Clin Invest 1954; 33: 1227-32.
  • 37a Fox P, Raichle M, Mintun M, Dece C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241: 462-4.
  • 38 Frackowiak R S, Jones T, Lenzi G L. et al. Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography. Acta Neurol Scand 1980; 62: 336-44.
  • 39 Frackowiak R S, Wise R J. Positron tomography in ischemic cerebrovascular disease. Neurol Clin 1983; 01: 183-201.
  • 40 Gallagher B M, Ansari A, Atkins H. et al. Radiopharmaceuticals XXVII. 18F -labelcd 2-deoxy-2-fluoro-D-glucose as radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 1977; 18: 990.
  • 41 Gallagher B M, Fowler J S, Guttersan N I. et al. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of (18F)2-fluoro-2-deoxyglucose. J Nucl Med 1978; 19: 1154-61.
  • 42 Gibbs J M, Wise R J S, Leenders K L, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984; i: 310-4.
  • 43 Goodale W T, Hackel D B. Myocardial carbohydrate metabolism in normal dogs, with effects of hyperglycemia and starvation. Circ Res 1953; 01: 509-17.
  • 44 Goodale W T, Olson R E, Hackel D B. The effects of fasting and diabetes mellitus on myocardial metabolism in man. Am J Med 1959; 27: 212-20.
  • 45 Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand 1979; 72 (Suppl. 60) 54-5.
  • 46 Gross G J, Färber N E, Hardmann H F, Warltier D C. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986; 250: H372-7.
  • 47 Grubb R L, Phelps M E, Raichle M E. The effects of arterial blood pressure on the regional cerebral blood volume by X-ray fluorescence. Stroke 1973; 04: 390-9.
  • 48 Harper A A, Glass H I. The effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Ncurosurg Psychiatr 1965; 28: 449-52.
  • 49 Hayden M R, Hewitt J, Stoessl A J. et al. The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 1987; 37: 1441-7.
  • 50 Heiss W D, Pawlik G, Wagner R. et al. Functional hypometabolism in non-infarcted brain regions in ischemic stroke. J Cereb Blood Flow Mctab 1983; 03 (Suppl. 01) 582-3.
  • 51 Heiss W D. Flow thresholds of functional and morphological damage of brain tissue. Stroke 1983; 14: 329-31.
  • 52 Henes C G, Bergmann S R, Walsh M N, Sobel B F, Geltman F M. Assessment of myocardial oxidative metabolic reserve with PET and carbon-11 acetate. J Nucl Med 1989; 30: 1489-99.
  • 53 Heyndrickx G R, Millard R W, McRitchic R J, Maroko P R, Vatncr S F. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975; 56: 978-85.
  • 54 Hiraoka T, DeBuysere M, Olson M D. Studies of the effects of beta-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem 1980; 255: 7604-9.
  • 55 Huang S C, Phelps M E, Hoffmann E J. et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980; 128: E69-82.
  • 56 Jolies P R, Chapman P R, Alavi A. PET, CT, and MR1 in the evaluation of neuropsychiatrie disorders: Current applications. J Nucl Med 1989; 30: 1589-606.
  • 57 Kety S S. Circulation and metabolism of the human brain in health and disease. Am J Med 1950; 08: 205-17.
  • 58 Keul J, Doll E, Keppler D. Energy metabolism of human muscle. Baltimore: University Park Press; 1972
  • 59 Kloner R A, DeBoer L W, Darsee J R. et al. Prolonged abnormalities of myocardium salvaged by rcpcrfusion. Am J Physiol 1981; 241: H591-9.
  • 60 Kloner R A, Ellis S G, Lange R, Braunwald E. Studies of experimental coronary artery rcpcrfusion: Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983; 68 (Suppl. 01) 8-15.
  • 61 Knapp W H, Hclus F, Ostertag H, Tillmans H, Kübler W. Uptake and turnover of L-(13N)-glutamate in the normal human heart and patients with coronary artery disease. Eur J Nucl Med 1982; 07: 211-5.
  • 62 Knapp W H, von Kummer R, Kübler W K. Imaging of cerebral blood flow-to-volumc distribution using SPECT. J Nucl Med 1986; 27: 465-70.
  • 63 Krivokapich K, Huang S C, Phelps M E. et al. Estimination of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am J Physiol 1982; 243: H884-95.
  • 64 Kühl D E, Metter E J, Riege W H. et al. Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann Neurol 1984; 15 (Suppl): S119-25.
  • 65 Kühl D E, Phelps M E, Kowell A P. et al. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 1KFDG and 13NH3. Ann Neurol 1980; 08: 47-60.
  • 66 Kuhl D E, Phelps M E, Markham C. et al. Local cerebral glucose metabolism in Huntington’s disease determined by emission computed tomography of 18F-fluorodcoxyglucose. J Cereb Blood Flow Mctab 1981; 01 (Suppl. 01) 459-60.
  • 67 Kuhl D E, Phelps M E, Markham C H. et al. Cerebral metabolism and atrophy in Huntington’s disease determined by I 8FDG and computed tomographic scan. Ann Neurol 1982; 12: 425-34.
  • 68 Kuweit T, Lange H W, Langen K-J. et al. Reduction of cortical and thalamic glucose consumption measured by PET in patients with Huntington’s disease. J Nucl Med 1989; 30: 771.
  • 69 Lassen N A. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959; 39: 183-238.
  • 70 Lassen N A. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 1966; ii: 1113-5.
  • 71 Lenzi G L, Frackowiak R J S, Jones T. et al. CMRO2 and CBF by oxygen-15 inhalation technique. Results in normal volunteers and cerebrovascular patients. Eur Neurol 1981; 20: 285-90.
  • 72 Lenzi G L, Frackowiak R S, Joncs T. Regional cerebral blood flow (CBF), oxygen utilization (CMRO2) and oxygen extraction ratio (OER) in acute hemispheric stroke. J Cereb Blood Flow Metab 1981; 01 (Suppl. 01) 504-5.
  • 73 Liedtke A J, De Maison L, Egglcston A M, Cohen L M, Nellis S H. Changes in substrate metabolism and effects of excess fatty acids in rcpcrfused myocardium. Circ Res 1988; 62: 535-42.
  • 74 Liedtke A J. Alterations of carbohydrate and lipid metabolism in the acutely ischcmic heart. Progr Cardiovasc Dis 1981; 23: 321-36.
  • 75 Marshall R C, Nash W W, Shine K I, Phelps M E, Ricchiutti N. Glucose metabolism during ischcmia due to excessive oxygen demand to altered coronary flow in the isolated arterially perfused rabbit septum. Circ Res 1981; 49: 640-8.
  • 76 Mazziotta J C, Phelps M E, Pähl J J. et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987; 316: 357-62.
  • 77 Meyer J S, Ryu T, Toyoda M. et al. Evidence for a Pasteur effect regulating ccrcbral oxygen and carbohydrate metabolism in man. Neurology (Minneap) 1969; 19: 954-62.
  • 78 Mochizuki S, Neely J R. Control of glyccraldehyde 3-phosphatc dehydrogenase in cardiac muscle. J Mol Cell Cardiol 1979; 11: 221-36.
  • 79 Morgan H E, Neely J R, LaNoue K F. Biochcmical events in ischemic heart. In: Hjalmarson A, Wilhclmsen L. Acute and long-term management of myocardial ischcmia. Goteborg: Astra; 1977: 10-22.
  • 80 Mudgc Jr G H, Mills Jr R M, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischcmic heart diseases. J Clin Invest 1976; 58: 1185-92.
  • 81 Myers M L, Bolli R, Lckich R F Hartley C J, Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischcmia. Circulation 1985; 72: 915-21.
  • 82 Opie L H. Metabolism of the heart in health and disease. Am Heart J 1968; 76: 685-98.
  • 83 Opie L H. Effects of regional ischemia on metabolism of glucose and fatty acids. Circ Res 1976; 38 (Suppl I): 152-74.
  • 84 Patronas N J, Brooks R A, DeLaPaz R L. et al. Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR 1983; 533-5.
  • 85 Patronas N J, Di Chiro G, Brooks R A. et al. Work in progress: (18F) fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982; 144: 885-9.
  • 86 Phelps M E, Hoffmann E J, Selin C. et al. Investigation of (18F)2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 1978; 19: 1131.
  • 87 Phelps M E, Huang S C, Hoffmann E J. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 06: 371-88.
  • 88 Powers W J, Grubb R L, Raichle M E. Physiological response to focal cerebral ischemia in humans. Ann Neurol 1984; 16: 546-52.
  • 89 Powers W J, Martin W R W, Herscovitch P, Raichic M, Grubb R L. Extracranialintracranial bypass surgery: hemodynamic and metabolic cffects. Neurology 1984; 34: 1168-74.
  • 90 Przyklenk K, Kloner R A. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned” myocardium. Circ Res 1986; 58: 148-56.
  • 91 Raichlc M E, Larson K B, Phelps M E. et al. In vivo measurement of brain glucose transport and metabolism employing glucose-11C. Am J Physiol 1975; 228: 1936.
  • 92 Rändle P J, Garland P B, Hales C N, Ncwsholme E A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the mctabolic disturbances of diabetes mellitus. Lancet 1963; i: 785-9.
  • 93 Ratib O, Phelps M E, Huang S C. et al. The deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography. J Nucl Med 1982; 23: 577-86.
  • 94 Reimer K A, Hill M L, Hennings R B. Prolonged depiction of ATP and of the nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible ischcmic injury in dogs. J Mol Cell Cardiol 1981; 03: 229-39.
  • 95 Reivich M, Kuhl D E, Wolf A. et al. The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979; 44: 127-37.
  • 96 Renstrom B, Liedtke A J, Whitesell L F. et al. Pyruvate oxidation in reperfused myocardium. Circulation 1988; 78 (Suppl II): 343.
  • 97 Renstrom B, Ncllis S H, Licdtkc A J. Metabolie oxidation of glucose during early myocardial reperfusion. Cire Res 1989; 65: 1094-101.
  • 98 Rhodes C G, Wise R J, Gibbs J M. et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983; 14: 614-26.
  • 99 Rigo P, De Landsheere C, Racts D. et al. Demonstrations by positron tomography and 18F -dcoxyglucose of regional myocardial viability after myocardial infarction: influence of fibrinolysis and revascularization. J Nucl Med 1985; 26: 87.
  • 100 Rothlin M E, Bing R. Extraction and release of individual free fatty acids by the heart and fat depots. J Clin Invest 1961; 40: 1380-5.
  • 101 Schaper W, Buchwald A, Hoffmeister H M, Ito B R. “Stunned” myocardium is a problem of energy utilization and not of energy supply. Circulation 1985; 72 (Suppl III): 119.
  • 102 Scheibert H R, Schön H R, Henze E. et al. Noninvasive demonstration of the effects of substrate availability on myocardial metabolism. Circulation 1982; 66 (Suppl II): 351.
  • 103 Schelbert H R, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 1988; 78: 496-505.
  • 104 Scheuer J, Stezoski S W. Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Cire Res 1970; 27: 835-49.
  • 105 Schwaiger M, Brunken R, Grover-McKay M. et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986; 08: 800-8.
  • 106 Schwaiger M, Brunken R, Krivokapich J. et al. Beneficial effect of residual antegrade flow on tissue viability as assessed by positron emission tomography in patients with myocardial infarction. Eur Heart J 1987; 08: 981-8.
  • 107 Schwaiger M, Schelbert H R, Ellison D. et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985; 06: 336-47.
  • 108 Schwaiger M, Schelbert H R, Keen R. et al. Retention and clearance of C-11 palmitic acid and reperfused canine myocardium. J Am Coll Cardiol 1985; 06: 311-20.
  • 109 Selwyn A P, Allan R M, Pike V, Fox K, Maseri A. Positive labeling of ischemic myocardium: A new approach to patients with coronary disease. Am J Cardiol 1981; 47: 81.
  • 110 Skyhoj TOlsen, Larsen B, Herning M, Skriver E B, Lassen N A. Blood flow and vascular reactivity in collaterally perfused brain tissue. Stroke 1983; 14: 332-41.
  • 111 Skyhoj TOlsen, Larsen B, Skriver E B. et al. Focal cerebral hyperemia in acute stroke; incidence, pathophysiology and clinical significance. Stroke 1981; 12: 598-606.
  • 112 Skyhoj TOlsen, Lassen N A. A dynamic concept of middle cerebral artery occlusion and cerebral infarction in the acute state based on interpreting severe hyperemia as a sign of embolic migration. Stroke 1984; 15: 458-68.
  • 113 Smith C B, Sokoloff L. The energy metabolism of the brain. In: The molecular basis of neuropathology. London: Arnold; 1981: 104-31.
  • 114 Sokoloff L. The metabolism of the cerebral nervous system in vivo. In: Field J, Magoun H W, Hall V E. eds. Handbook of Physiology: Neurophysiology III. Washington D.C: American Physiological Society; 1960: 1843-64.
  • 115 Sokoloff L. The action of drugs on the cerebral circulation. Pharmacol Rev 1959; 11: 1-85.
  • 116 Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel C J, Albcrs R W, Katzman R W, Agranoff B W. Basic neurochemistry. 2nd ed. Boston: Little, Brown; 1976: 388-413.
  • 117 Sokoloff L. Local cerebral energy metabolism: Its relationships to local functional activity and blood flow. In: Purves M J, Elliott K. eds. Ciba Foundation Symposium 56: Cerebral vascular smooth muscle and its control. Amsterdam: Elsevier/ Excerpta Medica/Nort-Holland; 1978: 171-97.
  • 118 Taegtmeyer H, Ferguson A G, Lesch M. Protein degradation and amino acid metabolism in autolyzing rabbit myocardium. Exp Mol Pathol 1977; 26: 52-62.
  • 119 Taegtmeyer H, Peterson M B, Ragavan V V, Ferguson A G, Lesch M. De novo alanine synthesis in isolated oxygen-deprived rabbit myocardium. J Biol Chem 1977; 252: 5010-8.
  • 120 Taegtmeyer H, Roberts A F C, Raine A E G. Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 1985; 06: 864-70.
  • 121 Taegtmeyer H. Myocardial metabolism. In: Phelps M E, Mazziotta J C, Schelbert H R. eds. Positron emission tomography and autoradiography - Principles and applications for the brain and heart. New York: Raven Press; 1986: 149-95.
  • 122 Tillisch J, Brunken R, Marshall R. et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Eng J Med 1986; 314: 884-8.
  • 123 Weiss H R, Neubauer J A, Lipp J A, Sinha A K. Quantitative determination of regional 0 2 consumption in the dog heart. Circ Res 1978; 42: 394-401.
  • 124 Weiss H R, Sinha A K. Regional O2 saturation of small arteries and veins in canine myocardium. Circ Res 1978; 42: 119-26.
  • 125 Williamson J R. Glycolytic control mechanisms. II. Kinetics of the intermediate changes during the aerobic-anoxic transition in perfused rat heart. J Biol Chem 1966; 241: 5026-36.
  • 126 Wise R J S, Bernardi S, Frackowiak R S J, Legg N J, Jones T. Serial observations on the pathophysiology of acute stroke: the transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 1983; 106: 197-222.
  • 127 Yamasaki T, Tateno Y, Shishido F. et al. Positron computed tomography studies: Potential use in neuropsychiatrie disorders. Proc World Congr Nucl Med 1982; 03: 2212-5.
  • 128 Yonekura Y, Tamaki N, Kambara H. et al. Detection of metabolic alterations in ischemic myocardium by F-18 fluorodeoxyglycose uptake with positron emission tomography. Am J Card Imag 1988; 02: 122-32.
  • 129 Young A B, Penney J B, Starosta-Rubinstein S. et al. Normal caudate glucose metabolism in persons at risk for Huntington’s disease. Arch Neurol 1987; 44: 254-7.