Nuklearmedizin 1991; 30(03): 77-83
DOI: 10.1055/s-0038-1629557
ÜBersichtsartikel - Review Articles
Schattauer GmbH

Einfluß von Hyperund Hypothyreose auf den Energiestoffwechsel der Skelettmuskulatur

Eine Untersuchung mit 31P-KernspinspektroskopieEffects of Hypo- und Hyperthyroidism on Skeletal Muscle MetabolismA 31P Magnetic Resonance Spectroscopy Study
D. Moka
1   Aus der Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. med. H.Schicha) Universität zu Köln, FRG
,
P. Theissen
1   Aus der Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. med. H.Schicha) Universität zu Köln, FRG
,
A. Linden
1   Aus der Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. med. H.Schicha) Universität zu Köln, FRG
,
W. Waters
1   Aus der Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. med. H.Schicha) Universität zu Köln, FRG
,
H. Schicha
1   Aus der Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. med. H.Schicha) Universität zu Köln, FRG
› Author Affiliations
Further Information

Publication History

Eingegangen: 10 February 1991

Publication Date:
05 February 2018 (online)

31P magnetic resonance spectroscopy allows non-invasive evaluation of phosphorus metabolism in man. The purpose of the present study was to assess the influence of hyper- and hypothyroidism on the metabolism of resting human skeletal muscle. The present data show that quantitative measurement of phosphate metabolism by NMR is possible as also demonstrated by other studies. Using a quantitative evaluation method with an external standard, significant differences in the levels of phosphocreatine, adenosintriphosphate, and phosphodiesters were found. In hypothyroid patients a TSH-dependent increase in phosphodiesters and a decrease in adenosintriphosphate and phosphocreatine was observed. In hyperthyroidism a similar decrease in adenosintriphosphate but a considerably higher decrease in phosphocreatine occurred. In the light of the results of other studies of muscle metabolism, these changes appear to be non-specific so that further studies are required to assess the clinical value of such measurements.

Zusammenfassung

Die 31P-Kernspinspektroskopie ermöglicht auf nichtinvasive Weise die Untersuchung von Teilaspekten des Energiestoffwechsels des menschlichen Gewebes in vivo und gestattet so nähere Erkenntnisse zur Pathophysiologie bestimmter Erkrankungen. Die vorliegenden Daten unterstützen die auch von anderen Autoren beschriebene Durchführbarkeit einer quantitativen Bestimmung der Metaboliten des Phosphatstoffwechsels mittels Kernspinspektroskopie bei einer Messung gegen einen externen Standard. Ziel der vorliegenden Studie war es, mit dieser Methode den Einfluß von Hyperthyreose und Hypothyreose auf die Skelettmuskulatur im Ruhezustand zu überprüfen. Bei der quantitativen Auswertung der Spektren fanden sich signifikante Veränderungen der Konzentration von Phosphokreatin, Adenosintriphosphat und Phosphodiestern. Bei Hypothyreose trat ein TSH-konzentrationsabhängiger Anstieg der Phosphodiester und ein Abfall von Adenosintriphosphat und Phosphokreatin auf. Bei Hyperthyreose kam es zu einem der Hypothyreose vergleichbaren Abfall von Adenosintriphosphat und zu einem erheblich stärkeren Rückgang von Phosphokreatin. Der Vergleich mit anderen Studien des Muskelstoffwechsels bei anderen Erkrankungen läßt den Schluß zu, daß die erfaßten Veränderungen unspezifisch sind. Weitere Studien müssen klären, welchen klinischen Stellenwert diese Informationen über den Muskelstoffwechsel besitzen.

 
  • LITERATUR

  • 1 Argov Z, Bank WJ, Maris J, Peterson P, Chance B. Bioenergetic heterogeneity of human mitochondrial myopathies: Phosphorus magnetic resonance spectroscopy study. Neurol 1987; 37: 257-62.
  • 2 Argov Z, Renshaw PF, Boden B, Winokur A, Bank WJ. Effects of thyroid hormones on skeletal muscle bioenergetics. J Clin Invest 1988; 81: 1695-701.
  • 3 Arnold DL, Taylor DJ, Radda GK. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 1985; 18: 189-96.
  • 4 Barany M, Glonek T. Identification of diseased states by phosphorus-31 NMR. In: Gorenstein D. ed. Phosphorus-31 NMR, New York: Academic Press; 1984: 511-45.
  • 5 Barany M, Siegel IM, Venkatasubramanian PM, Mok E, Wilbur AC. Human leg neuromuscular diseases: P-31 spectroscopy. Radiology 1989; 172: 503-8.
  • 6 Bessman SP, Geiger PJ. Transport of energy in muscle: phosphorylcreatine shuttle. Science 1981; 211: 448-52.
  • 7 Bottomley PA. Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe. Radiology 1989; 170: 1-15.
  • 8 Burt CT, Glonek T, Barany M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem 1976; 251: 2584-91.
  • 9 Creshull I, Dawson MJ, Edwards RHT. et al. Human muscle analysed by 31-P nuclear magnetic resonance in intact subjects. J Physiol 1984; 317: 18P.
  • 10 Dawson MJ. Quantitative analysis of metabolite levels in normal human subjects by 31P topical magnetic resonance. Biosci Rep 1982; 02: 727-33.
  • 11 Edwards RHT, Dawson MJ, Wilkie DR, Gordon RE, Shaw D. Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 27: 725-30.
  • 12 Gyulai L, Zygmund R, Leigh JS, Chance B. Bioenergetic studies of mitochondrial oxidative phosphorylation using 31-Phosphorus NMR. J Biol Chem 1985; 260: 3947-54.
  • 13 van Hardeveld C, Kassenaar AAH. Thyroid hormone uptake and T4 derived T3 formation in different skeletal muscle types of normal and hyperthyroid rats. Acta Endocrinol 1978; 88: 306-20.
  • 14 Harris RC, Hultman E, Nordesjoe LO. Glycogen, glycolic intermediates and high- energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 1974; 33: 109-20.
  • 15 Hoch FL. Thyrotoxicosis as a disease of mitochondria. N Engl J Med 1962; 266: 446-98.
  • 16 Ianuzzo D, Patel P, Chen V, O’Brien P, Williams C. Thyroidal trophic influence on skeletal muscle myosin. Nature 1977; 270: 74-6.
  • 17 Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 1982; 242: H729-44.
  • 18 Kaiser WA, Hartl W, Sturm H, Schalke BCG, Zeitler E. 31 P-NMR Spektroskopie bei Muskelerkrankungen: Korrelation zur MR-Bildgebung. Fortschr Röntgenstr 1987; 146: 137-44.
  • 19 Kuhlback B. Creatine and creatinine metabolism in thyrotoxicosis and hypothyroidism. Acta Med Scand (Suppl) 1957; 01: 331.
  • 20 Lawrie RA. The relation of energy-rich phosphate in muscle to myoglobin and to cytochromeoxidase activity. Biochem J 1953; 55: 305.
  • 21 Lehmann-Horn F, Höpfel D, Rüdel R, Ricker K, Kiither G. In vivo P-NMR spectroscopy: Muscle energy exchange in paramvotonia patients. Muscle & Nerv 1985; 08: 606-10.
  • 22 Lenkinski RE, Holland GA, Allman T. et al. Integrated MR imaging and spectroscopy with chemical shift imaging of P-31 at 1.5 T: Initial clinical experience. Radiology 1988; 169: 201-6.
  • 23 McKeran RO, Slavin G, Andrews TM, Ward P, Mair WGP. Muscle fibre type changes in hypothyroid myopathy. J Clin Path 1975; 28: 659-63.
  • 24 Meyer RA, Brown TR, Kushmerick MJ. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol 1985; 248 (Cell Physiol 17): C279-87.
  • 25 Meyer RA, Kushmerick MJ, Brown TR. Application of 31-P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol (Cell Physiol 11) 1982; 242: Cl-11.
  • 26 Ordidge RJ, Connelly A, Lohman JAB. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 1986; 66: 283-94.
  • 27 Pearce J, Aziz H. The neuromyopathy of hypothyroidism; some new observations. J Neurol Sei 1969; 09: 243-53.
  • 28 Radda KG. The use of NMR spectroscopy for the understanding of disease. Science 1986; 233: 640-5.
  • 29 Satoyoshi E, Murakami K, Kowa II. et al. Myopathy in thyrotoxicosis. Neurology (Minneap) 1963; 13: 645.
  • 30 Starcuk Z, Starcuk Jr Z, Halamek J. Correction of baseline and lineshape distortions in Fourier transform NMR spectroscopy by estimation of missing signals. J Magn Reson 1990; 86: 30-8.
  • 31 Sterling K, Lazarus JH, Milch PO, Sakurada T, Brenner MA. Mitochondrial thyroid hormone receptor: Localization and physiological significance. Science 1978; 201: 1126-9.
  • 32 Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK. Bioenergetics of intact human muscle. A 31-P nuclear magnetic resonance study. Mol Biol Med 1983; 01: 77-94.
  • 33 Tofts PS. The non-invasive measurement of absolute metabolite concentration in vivo using surface-coil NMR spectroscopy. J Magn Reson 1988; 80: 84-95.
  • 34 Venkatasubramanian PN, Mafee MF, Barrany M. Quantitation of phosphate metabolites in human leg in vivo. Magn Reson Med 1988; 06: 359-63.
  • 35 Wider G. Elimination of baseline artifacts in NMR spectra by oversampling. J Magn Reson 1990; 89: 406-9.
  • 36 Wiles CM, Young A, Jones DA, Edwards RHT. Muscle relaxation rate, fibre-type composition and energy turnover in hyperand hypothyroid patients. Clin Sei 1979; 57: 375-84.
  • 37 Winder WW, Baldwin KM, Terjung RL, Holloszy JO. Effects of thyroid hormone administration on skeletal muscle mitochondria. Am J Physiol 1975; 228: 1341-5.
  • 38 Zochodne DW, Thompson RT, Driedger AA. et al. Metabolic changes in human muscle denervation: topic 31-P NMR spectroscopy. Magn Reson Med 1988; 07: 373-83.
  • 39 Zuercher RM, Horber FF, Gruenig BE, Frey FJ. Effect of thyroid dysfunction on thigh muscle efficiency. J Clin Endocrin Metab 1989; 69: 1082-6.