RSS-Feed abonnieren
DOI: 10.1055/s-0038-1629718
Vergleich von relativer 18FDG-Aufnahme mit metabolischer Rate (MRGlukose) im Myokard bei KHK, klassifiziert mit 99mTc-MIBI
Comparison of Relative 18FDG Uptake to Metabolie Rate (MRGlucose) in the Myocardium in CAD, Classified by 99mTc MIBI[*]Publikationsverlauf
Eingegangen:
01. August 1995
in revidierter Form:
25. August 1995
Publikationsdatum:
05. Februar 2018 (online)
Zusammenfassung
Ziel: Sind a) die typischen Perfusions-/Stoffwechsel-Befundmuster (Match, Mismatch) aus dem Vergleich 99mTc-MIBI-/18FDG-Speicherung (normiert auf das Perfusionsmaximum) auch für 99mTc-MIBI-/regionale MRGlukose (Glu; Auswertung nach Patlak) zu finden und ist b) rMGIu im Perfusionsmaximum für alle Schweregrade der KHK im Richtwertebereich? Methoden: Bei 55 Patienten mit KHK wurden die relative myokardiale Speicherung von 99mTc-MIBI (in Ruhe; SPECT) und von 18FDG (nach Glukoseladung, PET) vergleichend zu rMRGIu (in fxmol/100 g/min) in je 13 Segmenten des linken Ventrikels (insgesamt 715 Segmente) bestimmt. Ergebnisse: Die rMRGIu zeigte Streubreiten von bis zu 51 %. Sie nahm in der Reihenfolge normal (52,7 ± 27,3 fxmol/100 g/min), mismatch (45,3 ± 17,3), intermediär (35,2 ± 12,4) nach match (»avital«, 26,7 ± 13,3) signifikant (p <0,01) ab. In 26% der Perfusionsmaxima war MIRGIu <40 fxmol/ 100 g/min, darunter nur bei fünf Dreigefäßerkrankungen (von 28) <30 fxmol. Die Serumglukosewerte zeigten bei drei dieser fünf Patienten eine ungenügende Antwort auf die orale Glukosebelastung. Schlußfolgerung: rMIRGIu erbrachte bei KHK die gleichen Fluß/Stoffwechsel-Befundmuster wie die relative FDG-Speicherung. Der größere Aufwand für die Berechnung von rMRGIu ergab keinen diagnostischen Vorteil. Das Perfusionsmaximum (100% MIBI) als Bezugswert für FDG (= 100% FDG) war auch bei euglykämisch eingestellten Patienten mit Dreigefäßerkrankungen verläßlich.
Summary
Aim: Are i) typical patterns of perfusion/metabolism (match, mismatch), gained from relative 99mTc-MIBI vs relative 18FDG uptake (normalized to the perfusion maximum) obtainable also vs absolute MRGIu and is ii) rMRGIu in the segment of maximum perfusion (MIBI = 100%) within the normal range for all degrees of coronary artery disease (CAD)? Methods: In 55 non-diabetic patients with CAD, relative myocardial perfusion (99mTc MIBI SPECT at rest) and relative 18FDG uptake (PET after glucose load) were used to separate for various flow/metabolism constellations. In addition, regional glucose metabolic rate (rMRGIu in ixmol/ 100 g/min; dynamic-graphic analysis from Gambhir/Patlak) was determined in 13 segments of the left ventricle each (i. e., in a total of 715 segments). Results: rMRGIu revealed wide standard deviations (up to 51%). It decreased from normal (52.7 ± 27.3 (xmol/100 g/min), mismatch (45.3 ± 17.3) and intermediate (35.2 ± 12.4) to match (»non viable«; 26.7 ± 13.3) significantly (p <0.01). In 26% of the perfusion maxima, MRGIu was <40 (xmol/100 g/min. Out of these, only in five patients (of 28) with 3-vessel disease, it was even smaller (<30 (xmol). In three out of the latter, glucose blood levels were below euglycemia. Conclusion: rMRGIu in CAD revealed an identical perfusion/metabolism pattern as relative 18FDG uptake. Thus, the higher efforts employed to compute rMRGIu do not yield diagnostic advantage. The segmental perfusion maximum, used for normalization of relative 18FDG uptake (100% MIBI uptake = 100% FDG uptake) was reliable in euglycemic patients even with 3-vessel disease.
* Diese Arbeit enthält Teile der Inauguraldissertation von Frau cand. med. Y. Foroutan.
* Medizinischen Klinik I der RWTH, Klinikum Aachen, Deutschland
-
LITERATUR
- 1 Altehoefer C, Kaiser HJ, Dörr R. et al. Fluo-rine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 334-42.
- 2 Altehoefer C, vom Dahl J, Biederman M. et al. Significance of defect severity in technetium-99m-MIBI SPET at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994; 35: 569-74.
- 3 Baer FM, Voth E, Schneider ChA. et al. Comparison of low-dose dobutamine-gradient echo MRI and PET with 18-F fluorodeoxyglu-cose in patients with chronic coronary artery disease. Circulation 1995; 91: 1006-15.
- 4 Choi Y, Hawkins RA, Huang SC. et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-18F-Fluoro-2-deoxy-D-glucose studies. JNucl Med 1991; 32: 733-8.
- 5 Choi Y, Brunken RC, Hawkins RA. et al. Factors affecting myocardial 2-(F-18)fluoro-2-deoxy-D-glucose uptake in PET studies of normal humans. Eur J Nucl Med 1993; 20: 308-18.
- 6 Gambhir SS, Schwaiger M, Huang SC. et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing PET and F-18 Deoxyglucose. J Nucl Med 1989; 30: 359-66.
- 7 Hicks RJ, Herman WH, Kalf V. et al. Quantitative evaluation of regional substrate metabolism in the human heart by PET. J Am Coll Cardiol 1991; 18: 101-11.
- 8 Knuuti MJ, Nuutila P, Ruotsalainen U. et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during PET. J Nucl Med 1992; 33: 1255-62.
- 9 Knuuti MJ, Nuutila P, Ruosalainen U. et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med 1993; 34: 2068-75.
- 10 Knapp WH. Möglichkeiten und Grenzen der Myokardperfusionsszintigraphie für die Vitalitätsdiagnostik. Nucl-Med 1995; 34: 118-26.
- 11 Lucignani G, Paolini G, Landoni C. et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis-MIBI SPET and fluorine-18-2-deoxy-D-glucose PET in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 874-81.
- 12 Ohtake T, Yokoyama I, Watanabe T. et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995; 36: 456-63.
- 13 Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cerebr Blood Flow Metab 1985; 5: 584-90.
- 14 Perrone-Filardi P, Bararach SL, Dilsizian V. et al. Clinical significance of reduced myocardial glucose uptake in regions with normal blood flow in patients with CAD. J Am Coll Cardiol 1994; 23: 608-16.
- 15 Porenta G, Kuhle W, Czernin J. et al. Semiquantitative assessment of myocardial blood flow and viability using polar map display of cardiac PET images. J Nucl Med 1992; 33: 1623-31.
- 16 Ratib O, Phelps ME, Huang SC. PET for estimating local myocardial glucose metabolism. J Nucl Med 1982; 23: 577-86.
- 17 Schulz G, vom Dahl J, Kleinhans E, Büll U. Left branch bundle block (LBBB) causes reverse flow/FDG mismatch in severe left ventricular descending artery (LAD) disease (abstract). Eur J Nucl Med 1995; 22: 829.
- 18 Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by PET. J Nucl Med 1991; 32: 567-78.
- 19 Vanoverschelde JLJ, Melin JA, Bol A. et al. Regional oxidative metabolism in patients after recovery from reperfused anterior myocardial infarction. Relation to regional blood flow and glucose uptake. Circulation 1992; 85: 9-21.
- 20 vom Dahl J, Herrmann WH, Hicks RJ. et al. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic PET. Circulation 1993; 88: 395-404.
- 21 vom Dahl J, Altehoefer C, Sheehan FH. et al. Recovery of regional left ventricular dysfunction following coronary revascularization: impact of myocardial viability assessed by nuclear imaging and of vessel patency at follow-up angiography. J Am Coll Cardiol (in press).