RSS-Feed abonnieren
DOI: 10.1055/s-0038-1629760
18FDG beim primären Staging von Lungentumoren
Ergebnisse an einer Gammakamera mit einem 511 keV Kollimator 18FDG in the Primary Staging of Lung TumorsResults with a Gamma Camera and a 511 keV CollimatorPublikationsverlauf
Eingegangen:
15. August 1994
in revidierter Form:
07. Dezember 1994
Publikationsdatum:
03. Februar 2018 (online)
Zusammenfassung
Die Diagnostik von Primärtumoren der Lunge erfordert ein exaktes Staging nach der TNM-Klassifikation. Im Gegensatz zu den bereits etablierten bildgebenden Verfahren beschreibt 18FDG die funktionellen metabolischen Vorgänge im Tumorgewebe als Folge einer gesteigerten Glykolyse. Das Ziel der Studie war die Anwendung von 18FDG beim primären Staging von Lungentumoren. 44 Patienten wurden auf einer Gammakamera mit einem 511 keV Kollimator untersucht. Die 18FDG Akkumulation pulmonaler Tumoren und deren Metastasen erzielt bei den mit anderen bildgebenden Verfahren beschriebenen Herden (107) eine Sensitivität von 85%, bei den histologisch verifizierten Herden (50) von 89%, bei den Primärtumoren (35) von 100% sowie bei den Metastasen (63) von 76%. Als Alternative zu 18FDG PET Untersuchungen ist ein primäres Staging von Lungentumoren auch mit einer ECT-geeigneten Gammakamera und einem 511 keV Kollimator möglich.
Summary
The diagnosis of primary lung tumors requires a precise staging according to the TNM classification. In contrast to established imaging methods 18FDG describes the functional metabolic processes in the tumor tissue due to increased glycolysis. This paper describes the use of 18FDG in the primary staging of lung tumors and metastases. 44 patients were studied with a gamma camera and a 511 keV collimator. In comparison to pulmonary tumors and metastases detected by other imaging methods (107) the accumulation of 18FDG has a sensitivity of 85%, in lesions verified by histology (50) of 89%, in primary tumors (35) of 100% and in metastases (63) of 76%. As an alternative to FDG PET studies, primary staging of lung tumors is possible with a gamma camera, suitable for ECT and fitted with a 511 keV collimator.
* Kliniken für Nuklearmedizin der Stadt Wuppertal, FRG
-
Literatur
- 1 Bustos R, Sobino F. Stimulation of glycolysis as an activation signal in rat peritoneal macrophages. Biochem J 1992; 282: 299-303.
- 2 Callagher BM, Fowler JS, Gutterson NI. et al. Metabolic trapping as a principle of radiopharmaceutical design: Some factors responsible for the biodistribution of 18F-2-deoxy-2-fluoro-d-glucose. J Nucl Med 1978; 19: 1154-61.
- 3 Caskey CI, Zerhouni EA. The solitary pulmonary nodule. Semin Roentgenol 1990; 25: 85-95.
- 4 Cones DJ, Tarver RD, Gray WC. et al. Treatment of pneumothoraces utilizing small caliber chest tube. Chest 1988; 94: 55-7.
- 5 Di Chiro G, De La Paz RL, Brooks RA. et al. Glucose utilization of cerebral gliomas measured by F-18 fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-9.
- 6 Fischmann AJ, Alpert NM. FDG PET in oncology: There’s more to it than looking at pictures. J Nucl Med 1993; 34: 6-11.
- 7 Gupta NC, Frank AR, Dewan NA. et al. Solitary pulmonary nodules: Detection of malignancy with PET with 2-F-18 fluoro-2-deoxy-d-glucose. Radiology 1992; 184: 441-4.
- 8 Haberkorn U, Strauss LG, Dimitrakopoulou A. et al. PET studies of fluorodeoxyglucose metabolism with recurrent colorectal cancer receiving radiotherapy. J Nucl Med 1991; 32: 1485-90.
- 9 Höh CK, Hawkins RA, Glaspy JA. et al. Cancer detection with whole body PET using 2-F-18 fluoro-2-deoxy-d-glucose. J Comput Assist Tomogr 1993; 17: 582-9.
- 10 Horton RW, Meldrum BS, Bachelard HS. Enzymatic and cerebral metabolic effects of 2-deoxy-d-glucose. J Neurochem 1973; 21: 506-20.
- 11 Khouri NF, Meziane MA, Zerhouni EA. et al. The solitary pulmonary nodule: Assessment, diagnosis and management. Chest 1987; 91: 128-33.
- 12 Knoop MV, Bischoff HG, Ostertag H. et al. Clinical applications of FDG-PET for staging of bronchogenic carcinoma. J Nucl Med 1993; 31: 21P.
- 13 Knoop MV, Bischoff HG. Beurteilung von pulmonalen Herden mit der Positronenemissionstomographie. Radiologe 1994; 34: 58891.
- 14 Knuuti J, Nuntila P, Ruotsalainen U. et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992; 33: 1255-62.
- 15 König R, Steinbächer M, van Kaick G. et al. Was leistet die Computertomographie für die Stadieneinteilung des Bronchialkarzinoms?. Röntgenpraxis 1985; 38: 189-93.
- 16 Kubota K, Matzuzawa T, Fuyiwara T. et al. Differential diagnosis of lung tumors with positron emission tomography: A prospective study. J Nucl Med 1990; 31: 1927-32.
- 17 Kubota R, Kubota K, Yamada S. et al. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissue and cancer cells by the dynamics of fluorine-18-fluoro-deoxyglucose uptake. J Nucl Med 1994; 35: 104-12.
- 18 Langen KJ, Braun U, Rota Kops E. et al. The influence of the plasma glucose level on F-18 deoxyglucose uptake in human pulmonary neoplasms. 2nd European Workshop on FDG in oncology. Heidelberg 1991
- 19 Layer G, van Kaick G. Staging des nichtkleinzelligen Bronchialkarzinoms mit CT und MRT. Radiologe 1990; 30: 155-63.
- 20 Lindholm P, Minn H, Leskinen-Kallio S. et al. Influence of the blood glucose concentration on FDG uptake in cancer – a PET study. J Nucl Med 1993; 34: 1-6.
- 21 Lowe VI, Hoffmann JM, Patz EF. et al. Differentiation of benign and malignant pulmonary opacities with PET-FDG. J Nucl Med 1993; 34: 21P.
- 22 Nolop KB, Rhodes CG, Brudin LH. et al. Glucose utilization in vivo by human pulmonary neoplasms. Cancer 1987; 60: 2682-9.
- 23 Patz EF, Lowe VI, Hoffmann JM. et al. Focal pulmonary abnormalities: Evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 183: 487-90.
- 24 Piatt JF, Glaser M, Orringer MB. et al. Radiologic evaluation of subcarinal lymph nodes: A comparative study. Am J Radiol 1988; 38: 279-82.
- 25 Rege SD, Hoh CK, Glapsy JA. et al. Imaging of pulmonary mass lesions by whole-body positron emission tomography and fluorodeoxyglucose. Cancer 1993; 72: 82-90.
- 26 Rhodes CG, Valind SO, Brudin LH. et al. Modulation of pulmonary glucose utilization by dietary state in man. Clin Sci 1985; 68: 21.
- 27 Schaner EG, Chang AE, Doppmann DM. et al. Comparison of computed and conventional whole lung tomography in detecting pulmonary nodules: A prospective radiologie-pathologie study. Am J Radiol 1978; 131: 51-4.
- 28 Schwickert HC, Thelen M, Schweden F. et al. Staging des nicht kleinzelligen Bronchialkarzinoms mit CT und MRT. Radiologe 1990; 30: 155-63.
- 29 Seely JM, Mayo JR, Miller RR. et al. T( lung cancer: Prevalence of mediastinal nodal metastases and diagnostic accuracy of CT. Radiology 1993; 186: 129-32.
- 30 Swensen SJ, Jett JR, Payne WS. et al. An integrated approach to evaluation of the solitary pulmonary nodule. Mayo Clin Proc 1990; 65: 173-86.
- 31 Wahl RL, Hutchins GD, Buchsbaum DJ. et al. l8F-2-deoxy-2-fluoro-d-glucose uptake into human tumor xenografts. Cancer 1991; 67: 1544-50.
- 32 Warburg O. On the origin of cancer cells. Science 1956; 123: 309-14.
- 33 Yonekura Y, Benua RS, Brill AB. et al. Increased accumulation of 2-deoxy-2-F-18 fluoro-d-glucose in liver metastases from colon carcinoma. J Nucl Med 1982; 23: 1133-7.