Nuklearmedizin 1995; 34(03): 118-126
DOI: 10.1055/s-0038-1629767
Original Article
Schattauer GmbH

Möglichkeiten und Grenzen der Myokardperfusionsszintigraphie für die Yitalitätsdiagnostik

Potential and Limitation of Myocardial Perfusion Scintigraphy for Detection of Viability
W. H. Knapp
1   Aus der Klinik und Poliklinik für Nuklearmedizin, Universität Leipzig, FRG
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen: 01. Dezember 1994

Publikationsdatum:
03. Februar 2018 (online)

Zusammenfassung

Die nuklearmedizinische Diagnostik der Myokardvitalität wird notwendig vor Therapieentscheidungen oder zur Prognoseabschätzung bei Patienten mit segmentaler kontraktiler Dysfunktion im Rahmen einer koronaren Herzkrankheit. Von vier pathophysiologisch unterscheidbaren Formen der kontraktilen Dysfunktion sind hibernierendes Myokard und Narbe mit reinen Perfusionsindikatoren nicht zu differenzieren. Aufgrund der Determinanten für die Aktivitätsverteilung bei Spätaufnahmen nach 201TI-lnjektion kann mit diesem Radiopharmakon in vielen Fällen eine Differenzierung zwischen myokardialer Ruheischämie und Narbe vorgenommen werden. Die Differenzierung zwischen dem myokardialen »Stunning« einerseits und Ruheischämie oder Narbe andererseits bereitet mit den heute zur Verfügung stehenden Perfusionsindikatoren keine Schwierigkeit. Obwohl die 201TI-Szintigraphie mit optimiertem Untersuchungsprotokoll in ihren Ergebnissen der Vitalitätsdiagnostik denen der Positronen-Emissions-Tomographie mit 18F-FDG nahe kommt, bleibt letztere die Referenzmethode, v. a. bei Vorliegen einer hochgradigen linksventrikulären Dysfunktion und bekannten Koronarverschlüssen.

Summary

Scintigraphic detection of myocardial viability is required for treatment planning and prognostication in patients with contractile dysfunction. There are four pathophysiological entities of dysfunction in coronary artery disease; one of them, “hibernating” myocardium, cannot be differentiated from scar or necrosis by mere perfusion imaging. Due to the determinants of delayed activity distribution after 201TI injection, optimized imaging protocols using this tracer allow for adequate differentiation in many instants. Differentiation between “stunned” and “hibernating” myocardium or scar is achieved with all perfusion indicators actually available. Though 201TI imaging with optimized protocols is almost as efficacious in viability detection as 18F-FDG positron emission tomography, the latter actually remains the reference method particularly in patients with severe left ventricular dysfunction at coronary occlusions.

 
  • Literatur

  • 1 Altehöfer C, vom Dahl J, Biedermann M. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994; 35: 569-74.
  • 2 Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991; 69: 1458-69.
  • 3 Baer FM, Voth E, Deutsch HJ. et al. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 1994; 24: 343-53.
  • 4 Bartenstein P, Schober O, Hasfeld M. et al. Thallium-201 single photon emission tomography of myocardium: Additional information in reinjection studies is dependent on collateral circulation. Eur J Nucl Med 1992; 19: 790-5.
  • 5 Beanlands RS, Dawood F, Wen WH. et al. Are kinetics of technetium-99m methoxy-isobutyl isonitrile affected by cell metabolism and viability?. Circulation 1990; 82: 1802-43.
  • 6 Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and post-extrasystolic potentiation. J Am Coll Cardiol 1986; 7: 580-9.
  • 7 Beller GA, Holzgrefe HH, Watson DD. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation 1983; 68: 1328-38.
  • 8 Beller GA, Sinusas AJ. Experimental studies of the physiologic properties of technetium-99m isonitriles. Am J Cardiol 1990; 16: 66: 5E-8E.
  • 9 Beller GA, Watson DD, Ackell P. et al. Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation 1980; 61: 791-7.
  • 10 Beller GA. Myocardial reperfusion imaging: Basic principles and clinical applications. Am J Card Imaging 1993; pp 11-23.
  • 11 Berger BC, Watson D, Burbell LR. et al. Redistribution of thallium at rest and in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 1979; 60: 1125-31.
  • 12 Bolli R, Jeroudi MO, Patel BS. et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 1989; 86: 4695-9.
  • 13 Bolli R, Zhu W-X, Myers ML, Hartley CJ, Roberts R. Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent deterioration. Am J Cardiol 1985; 56: 964-8.
  • 14 Bolli R, Zhu W-X, Thornby JI, O’Neill PG, Roberts R. Time course and determinations of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 1988; 254: H102-H114.
  • 15 Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (stunned myocardium”). J Am Coll Cardiol 1988; 12: 239-49.
  • 16 Bonow RO, Dilsizian V, Cuocolo A. et al. Identification of viable myocardium in patients with chronic ischemic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18-F-fluorodeoxyglucose. Circulation 1991; 83: 26-37.
  • 17 Braunwald E, Kloner PA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146-9.
  • 18 Brunken R, Schwaiger M, Grover-McKay M. et al. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium defects. J Am Coll Cardiol 1987; 10: 557-67.
  • 19 Brunken RC, Kottou S, Nienaber CA. et al. PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT. Radiology 1989; 65: 65-73.
  • 20 Budinger TF, Knittel BL. Cardiac thallium redistribution and model. J Nucl Med 1987; 28: 588.
  • 21 Budinger TF, Pohost GM. Thallium »redistribution» – An explanation. J Nucl Med 1986; 27: 996.
  • 22 Büll U, Altehoefer C. Die Tl-201 Myokardszintigraphie (1974-1992): Vom Perfusionsdefekt zum Vitalitätsnachweis. Nucl-Med 1993; 32: 1-5.
  • 23 Camacho SA, Lanzer P, Toy BJ. et al. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Am Heart J 1988; 116: 701-8.
  • 24 Canby RC, Silber S, Pohost GM. Relations of the myocardial imaging agents Tc-99m-MIBI and Tl-201 to myocardial blood flow in a canine model of myocardial ischemic insult. Circulation 1990; 81: 289-96.
  • 25 Cloninger KG, DePeuy EG, Garcia EV. et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic images: An over-estimation of myocardial scarring. J Am Coll Cardiol 1988; 12: 955-63.
  • 26 Dae MW, Botvinick EH, Starksen NF. et al. Do 4-hour reinjection thallium images and 24-hour thallium images provide equivalent information?. J Am Coll Cardiol 1991; 17: 29.
  • 27 DeBoer LWV, Ingwall JS, Kloner RA, Braunwald E. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sei USA 1980; 77: 5471-5.
  • 28 Dilsizian V, Bacharach SL, Perrone-Filardi P. et al. Concordance and discordance between rest-redistribution thallium imaging and thallium reinjection after stress-redistribution imaging for assessing viable myocardium: Comparison with metabolic activity by PET. Circulation 1991; 84: 89.
  • 29 Dilsizian V, Arrighi JA, Diodati JG. et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of Tc-99m-Sestamibi with thallium reinjection and (18F) fluoro-deoxyglucose. Circulation 1994; 89: 578-87.
  • 30 Dilsizian V, Rocco T, Strauss W. et al. Technetium-99m isonitrile myocardial uptake at rest. I. Relation to severity of coronary artery stenosis. J Am Coll Cardiol 1989; 14: 1673-7.
  • 31 Dilsizian V, Rocco TP, Freedman NM. et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141-6.
  • 32 Dilsizian V, Smeltzer W, Freedman NM. et al. Thallium reinjection after stress redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium?. Circulation 1991; 83: 1247-55.
  • 33 Ehring T, Heusch G. Postextrasystolic potentiation does not distinguish ischaemic from stunned myocardium. Pfluegers Arch 1991; 418: 453-61.
  • 34 Ellis SG, Wynne J, Braunwald E. et al. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984; 107: 13-9.
  • 35 Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 1988; 78: 729-35.
  • 36 Flameng W, Suy R, Schwarz F. et al. Ultra-structural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy post vascularization surgery. Am Heart J 1981; 102: 846-57.
  • 37 Freeman I, Grunwald A, Hoory S. et al. Effect of coronary occlusion and myocardial viability on myocardial activity of technetium-99m Sestamibi. J Nucl Med 1991; 32: 292-8.
  • 38 Gallagher KP, Kumada T, Koziol JA. et al. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 1980; 62: 1266-74.
  • 39 Gallagher KP, Matsuzaki M, Osakada G. et al. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 1983; 52: 716-29.
  • 40 Gibson RS, Watson DD, Taylor GJ. et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804-15.
  • 41 Grunwald AM, Watson DD, Holzgrefe Jr HH. et al. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981; 64: 610-8.
  • 42 Guth BD, Martin JF, Heusch G. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 1987; 10: 673-81.
  • 43 Hearse DJ. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 1979; 44: 1115-21.
  • 44 Heusch G, Guth BD, Gilpin E. et al. Determinants of recovery of regional contractile function after exercise-induced ischemia in conscious dogs. Fed Proc 1987; 46: 834.
  • 45 Heusch G, Schäfer S, Kröger K. Recruitment of inotropic reserve in »stunned» myocardium by the cardiotonic agent AR-L57. Basic Res Cardiol 1988; 83: 602-10.
  • 46 Heusch G. Hibernation, stunning, ischemic preconditioning – neue Paradigmen der koronaren Herzkrankheit. Z Kardiol 1992; 81: 596-609.
  • 47 Hoffmeister HM, Mauser M, Schaper W. Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 1985; 80: 445-58.
  • 48 Ito BR, Tate H, Kobayashi M. et al. Reversi-bly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 1987; 61: 834-46.
  • 49 Jacobus WE, Pores IH, Lucas SK. et al. Intracellular acidosis and contractility in normal and ischemic hearts examined by 31P NMR. J Mol Cell Cardiol 1982; 14: 13-20.
  • 50 Kammermeier H. Verhalten von Ade-nin-Nukleotiden und Kreatininphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh Dtsch Ges Kreislaufforsch 1963; 30: 206-11.
  • 51 Kentish JC. The effects of inorganic phosphate and creatine phosphate on the force production in skinned muscle from rat vesicle. J Physiol 1986; 370: 585-604.
  • 52 Kiat H, Berman DS, Maddahi J. et al. Late reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456-63.
  • 53 Krause S, Hess ML. Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 1984; 55: 176-84.
  • 54 Krause SM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic stunned” myocardium. Circ Res 1989; 65: 526-30.
  • 55 Kübler W, Katz AM. Mechanism of early »pump» failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 1977; 40: 467-71.
  • 56 Kusuoka H, Koretsune Y, Chacko VP. et al. Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca++ transients underly stunning?. Circ Res 1990; 66: 1268-76.
  • 57 Kusuoka H, Porterfield JK, Weisman HF. et al. Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca 2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987; 79: 950-61.
  • 58 Langer A, Burns RJ, Freeman MR. et al. Reverse redistribution on exercise thallium scintigraphy: relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 1992; 26: 707-10.
  • 59 Lee J, Shung CC, Lee K. et al. Biokinetics of thallium-201 in normal subjects: comparison between adenosine, dipyramidole, dobutamine and exercise. J Nucl Med 1994; 35: 535-41.
  • 60 Leppo JA, Macneil PB, Moring AF. et al. Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium. J Nucl Med 1986; 27: 66-74.
  • 61 Leppo JA. Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts. J Nucl Med 1987; 28: 878-85.
  • 62 Liu P, Kiess MC, Okada RD. et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia?. Am Heart J 1985; 110: 996-1001.
  • 63 Marban E. Myocardial stunning and hibernation. The physiology behind the colloquialisms. Circulation 1991; 83: 681-8.
  • 64 Mazullo P, Parodi O, Reisenhofer B. et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993; 71: 166-72.
  • 65 Marshall R, Leidholdt E, Zhang DY. et al. The effect of flow on technetium-99m Te-boroxime (SQ30217) and thallium-201 extraction and retention in rabbit heart. J Nucl Med 1991; 32: 1979-88.
  • 66 Matsuzaki M, Gallagher KP, Kemper WS. et al. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after perfusion. Circulation 1983; 68: 170-82.
  • 67 McCallister BD, Clemments IP, Hauser MF. et al. The limited value of 24-hour images following 4-hour reinjection thallium imaging. Circulation 1991; 84 suppl II 11-533.
  • 68 Mercier JC, Lando U, Kanmatsuse K. et al. Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 1982; 66: 397-400.
  • 69 Mori T, Minamiyi K, Kurogane H. et al. Rest injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991; 32: 1718-24.
  • 70 Nakajima K, Taki J, Shuke N. et al. Myocardial perfusion imaging and dynamic analysis with technetium-99m- tetrofosmin. J Nucl Med 1993; 34: 1478-84.
  • 71 Nielsen A, Morris K, Murdock R. et al. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 1980; 4797-801.
  • 72 Pantely GA, Malone SA, Rhen WS. et al. Regeneration of myocardial phospho-creatine in pigs despite continued moderate ischemia. Circ Res 1990; 67: 1481-93.
  • 73 Picano E, Marzullo P, Gigli G. et al. Identification of viable myocardium by dipyrida-mol-induced improvement in regional left ventricular function by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest. Am J Cardiol 1992; 70: 252-8.
  • 74 Pierard L, Landsheere C, Berthe C, Rigo P, Kulbertus H. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 1990; 15: 1921-31.
  • 75 Pohost GM, Okade RD, O’Keefe DD. et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res 1981; 48: 439-46.
  • 76 Pohost GM, Zir LM, Moore RH. et al. Differentiation of transiently ischemic from in-farcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294-302.
  • 77 Rocco TP, Dilsizian V, McKusick KA. et al. Comparison of thallium redistribution with rest »reinjection» imaging for the detection of viable myocardium. Am J Cardiol 1990; 66: 158-63.
  • 78 RossJr J. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 1991; 83: 1076-83.
  • 79 Rozanski A, Berman DS, Gray R. et al. Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981; 64: 936-44.
  • 80 Schäfer S, Heusch G. Recruitment of a time dependent inotropic reserve by postextra-systolic potentiation in normal and reperfused myocardium. Basic Res Cardiol 1990; 85: 257-69.
  • 81 Schäfer S, Lindner C, Heusch G. Xamoterol recruits an inotropic reserve in the acutely failing, reperfused canine myocardium without detrimental effects on its subsequent recovery. Naunyn-Schmiedebergs Arch Pharmacol 1990; 342: 206-13.
  • 82 Schelbert X, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 1988; 78: 496-505.
  • 83 Schneider CA, Voth E, Theissen P. et al. Vitalitätsbeurteilung chronischer Myokardinfarkte durch F-18-FluoroD-Glukose-Po-sitronenemissionstomographie und Tc-99m-MIBI-SPECT. Z Kardiol 1994; 83: 124-31.
  • 84 Schober O, Hasfeld M, Matheja P, Schäfers M, Breithardt G. Thallium reinjection vs redistribution in severe stenosis of coronary arteries dependent on the collateralization. Eur J Nucl Med 1991; 18: 538.
  • 85 Schulz R, Guth BD, Pieper K. et al. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery: a model of short-term hibernation. Circ Res 1992; 70: 1282-95.
  • 86 Silberstein EB, DeVries DF. Reverse redistribution phenomenon in thallium-201 stress tests: angiographic correlation and clinical significance. J Nucl Med 1985; 26: 707-10.
  • 87 Sinusas A, Wason D, Cannon J. et al. Effect of ischemia and post ischemic dysfunction on myocardial uptake of technetium-99m labeled methoxybutyl isonitrile and thallium-201. J Am Coll Cardiol 1989; 14: 1785-93.
  • 88 Smart S, Sawada S, Ryan T. et al. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 1993; 88: 405-15.
  • 89 Sinusas AJ, Trautmann KA, Bergin JD. et al. Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation 1990; 82: 1424-37.
  • 90 Strauer BE, Burger S, Bull U. Multifactorial determination of Thallium-201 uptake of the heart: an experimental study concerning the influence of ventricular mass, perfusion and oxygen consumption. Basic Res Cardiol 1978; 73: 298-306.
  • 91 Strauss HW, Harrison K, Langan JK. et al. Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 1975; 51: 641-5.
  • 92 Swain JL, Sabina RL, McHale PA. et al. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982; 242: H818-H826.
  • 93 Tamaki N, Othani H, Yamashita K. et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673-8.
  • 94 Tamaki N, Othani H, Yonekura Y. et al. Significance of fill-in after thallium-201 reinjection following delayed imaging: Comparison with regional wall motion and angiographic findings. J Nucl Med 1990; 31: 1617-23.
  • 95 Tamaki N, Yonekura Y, Yamashita K. et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 1988; 52: 202-8.
  • 96 Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201-7.
  • 97 Verani MS, Jeroudi MO, Mahmarian JJ. et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxyisobutyl isonitrile. J Am Coll Cardiol 1988; 12: 1573-81.
  • 98 Wackers FJTh, Gibbons RJ, Verani MS. et al. Serial quantitative planar technetium-99m isonitrile imaging in acute myocardial infarction: Efficacy for noninvasive assessment of thrombolytic therapy. J Am Coll Cardiol 1989; 14: 861-73.
  • 99 Weich HE, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977; 56: 188-91.
  • 100 Weiss AT, Maddahi J, Lew AS. et al. Reverse redistribution of thallium-201: a sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 1986; 7: 61-7.
  • 101 Yang L, Berman DS, Kiat H. et al. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol 1990; 15: 334-40.