Nuklearmedizin 1994; 33(04): 167-173
DOI: 10.1055/s-0038-1629812
Original Article
Schattauer GmbH

Radioimmunotherapy with Monoclonal Antibodies[*]

A New Horizon in Nuclear Medicine Therapy?
Marie-Luise Sautter-Bihl
1   From the Dept. of Radiooncology and Nuclear Medicine, Klinikum Karlsruhe, and the Dept. of Nuclear Medicine, Katharinenhospital, Stuttgart, FRG
,
H. Bihl
1   From the Dept. of Radiooncology and Nuclear Medicine, Klinikum Karlsruhe, and the Dept. of Nuclear Medicine, Katharinenhospital, Stuttgart, FRG
› Author Affiliations
Further Information

Publication History

Received: 25 January 1994



Publication Date:
05 February 2018 (online)

Summary

Radioimmunotherapy (RIT) with labeled tumor-associated monoclonal antibodies (MAbs) is a promising concept in oncology, which essentially consists of biological targeting of ionising radiation to tumors. Some encouraging clinical results have been achieved with RIT. However, there are severe problems associated with both understanding the mechanisms and predicting the effectiveness of RIT. This paper reviews the results of some major clinical trials, especially in malignant lymphomas and in some solid tumors. Furthermore, problems with RIT are described such as the significance of dose inhomogeneity and dose-rate effects, the appropriate dose calculation method, the toxicity of RIT and the development of HAMAs. It is suggested that newer technologies including chimeric antibodies, multiple-step targeting protocols, bone marrow transplantation, parallel application of external radiation, heat or bioreductive drugs will enable RIT to make an essential contribution to strategies for combating cancer.

Zusammenfassung

Die Radioimmuntherapie (RIT) mit radiomarkierten, tumorassoziierten monoklonalen Antikörpern (MAbs) stellt ein vielversprechendes Konzept in der Onkologie dar. Unter Ausnutzung biologischer Mechanismen wird hierbei ionisierende Strahlung gezielt in Tumoren gebracht. Einige ermutigende klinische Ergebnisse wurden bereits erzielt; es existiert jedoch eine Reihe grundsätzlicher Probleme bei der RIT; ihr Wirkmechanismus ist nicht im Detail geklärt und nur in Einzelfällen gelingt eine zuverlässige Voraussage ihrer Effektivität. Die vorliegende Arbeit gibt einen Überblick über klinische Studien bei malignen Lymphomen und einigen soliden Tumoren. Darüber hinaus werden prinzipielle Probleme der RIT im Zusammenhang mit Dosisinhomogenität, Dosisrate, Dosimetrie, Toxizität und potentieller HAMA-Entwicklung analysiert. Neuere Technologien wie chimäre Antikörper, Mehrschnitt-Targeting Verfahren, BMT, kombinierter Einsatz von RIT mit externer Radiatio, Hyperthermie und immunmodulierenden Agentien werden zu einer Weiterentwicklung der RIT im Sinne eines zukünftigen Routineverfahrens der Onkologie beitragen.

* Dedicated to Prof. H. G. Heinze on the occasion of his 60th birthday


 
  • Literatur

  • 1 Badger CC, Krohn KA, Peterson AV, Shulman H, Bernstein I. Experimental radiotherapy of murine lymphoma with I-131-labeled anti-Thy 1.1 monoclonal antibody. Cancer Res 1985; 45: 1536-44.
  • 2 Bosslet K, Steinstrâsser A, Hermentin P. et al. Generation of bispecific monoclonal antibodies for two-phase radioimmunotherapy. Br J Cancer 1991; 63: 581-6.
  • 3 Brady LW, Miyamoto C, Woo DV. et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Radiât Oncol Biol Phys 1992; 22: 225-30.
  • 4 Brady LW, Mijamoto C, Bender H. et al. High grade gliomas of the brain: 125-I-EGFr as an adjuvant to primary tumors. Utilization of the radiolabeled MAB 425/EMD 55900 in the management of high grade gliomas. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 374-5. (abstr.)
  • 5 Breitz HB, Weiden PL, Vanderheyden JL. et al. Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: Results of phase I trials. J Nucl Med 1992; 33: 1099-112.
  • 6 Breitz HB, Fisher DR, Weiden PL. et al. Dosimetry of rhenium-186-labeled monoclonal antibodies: methods, predictions from technetium-99m-labeled antibodies and results of phase I trials. J Nucl Med 1993; 34: 908-17.
  • 7 Buchegger F, Pfister C, Fournier K. et al. Ablation of human colon carcinoma in nude mice by I-131-labeled monoclonal anticar-cinoembryonic antibody F(ab’)2 fragments. J Clin Invest 1989; 83: 1449-56.
  • 8 Buchegger F, Mach JP, Vogel CA. et al. Higher efficiency of I-131-labeled anti CEA-MAb F(ab’)2 as compared to intact antibodies in RIT of established human colon carcinoma grafted in nude mice. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 366-7. (abstr.)
  • 9 Buchsbaum DJ, ten Haken RK, Heidorn DB. et al. A comparison of I-131 labeled monoclonal antibodiy 17-1A treatment to external beam irradiation on the growth of LS 174T human colon carcinoma xenografts. Int J Radiât Oncol Biol Phys 1990; 18: 1033-41.
  • 10 Buras RR, Wong JYC, Kuhn JA. et al. Comparison of radioimmunotherapy and external beam radiotherapy in colon cancer. Int J Radiât Oncol Biol Phys 1993; 25: 473-9.
  • 11 Cheung NK, Landmeier B, Neely J. et al. Complete tumor ablation with iodine 131-radiolabeled disialoganglioside GD2-specific monoclonal antibody against human neuroblastoma xenografted in nude mice. J Natl Cancer Inst 1986; 77: 739-45.
  • 12 Cheung NK, Yeh SD, Gulati S. 131I-3F8: targeted radiotherapy of neuroblastoma: A phase I clinical trial. Proc Am Assoc Cancer Res 1990; 31: 284.
  • 13 Cheung NK, Yeh SD, Gulati S. et al. 131I-3F8: Clinical validation of imaging studies and therapeutic applications. Prog Clin Biol Res 1991; 366: 409-15.
  • 14 Cope DA, Dewhirst MW, Friedman HS, Bigner DD, Zalutsky MR. Enhanced delivery of a monoclonal antibody F(ab’)2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res 1990; 50: 1803-9.
  • 15 Deacon JM, Wilson P, Steel CG. Radiosensi-tivity of neuroblastoma. In: Advances in neuroblastoma research. Evans AE, D’Angio GJ, Seeger RC. (eds). New York: Alan R. Liss Inc; 1985: 525-31.
  • 16 DeNardo SJ, DeNardo GL, O’Grady LF. et al. Pilot studies of radioimmunotherapy of B-cell lymphoma and leukemia using I-131 Lym-1 monoclonal antibody. Antibody Immunoconj Radiopharm 1988; 1: 17-23.
  • 17 DeNardo GL, DeNardo SJ, Lewis JP. et al. Treatment of B-cells malignancies in patients using fractionated dose (FD) or maximum tolerated dose (MTD) of I-131-Lym-1 without and with immunophoresis. J Nucl Med 1991; 32: 921-2. (abstr.)
  • 18 DeNardo GL, Maddock SW, Sgouros G, Scheibe P, DeNardo SJ. Immunoadsorption: an enhancement strategy for radioimmunotherapy. J Nucl Med 1993; 34: 1020-7.
  • 19 DeNardo GL, DeNardo SJ. Radioimmunotherapy for lymphoma: the Sacramento experience. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Oncol 1993; 169: 376. (abstr.)
  • 20 DeNardo SJ, O’Grady LF, Kramer EL. et al. Radioimmunotherapy in breast cancer: current results in phase I protocols. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 367-7.
  • 21 Deutsch E, Libson K, Vanderheyden J-L, Ketring AR, Maxon HR. The chemistry of rhenium and technetium as related to the use of isotopes of these elements in therapeutic and diagnostic nuclear medicine. Int J Rad Appl Instrum B 1986; 13: 465-77.
  • 22 Eary JF, Appelbaum FL, Durack L, Brown P. Preliminary validation of the opposing view method for quantitative gamma camera imaging. Med Phys 1989; 16: 382-7.
  • 23 Eary JF, Press OW, Badger CC. et al. Imaging and treatment of B-cell lymphoma. J Nucl Med 1991; 31: 1257-68.
  • 24 Eary JF. Radioimmunotherapy of hematologic malignancy with I-131 labeled antibodies. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 375. (abstr.)
  • 25 Fisher DR, Badger CC, Breitz H. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies. Antibody Immunoconj Radiopharm 1991; 4: 655-64.
  • 26 Fowler JF. Radiobiological aspects of low dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys 1990; 18: 1261-9.
  • 27 Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990; 31: 1191-8.
  • 28 Griffith MH, Yorke ED, Wessels BW, DeNardo GL, Neacy WP. Direct dose confirmations of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy. J Nucl Med 1988; 29: 1795-809.
  • 29 Hall EJ. Radiobiology for the radiologist. Philadelphia: J. B. Lippincott; 1988
  • 30 Herbold G, Sautter-Bihl ML, Bihl H. Minimal residual disease: a target for radioimmunotherapy with I-131 labeled monoclonal antibodies? Some dosimetric considerations. Internat Meet Radioimmunotherapy, Oct, 1992, Stuttgart. Strahlenther Onkol 1993; 169: 367. (abstr.)
  • 31 Humm JL, Cobb LM. Nonuniformity of tumor dose in radioimmunotherapy. J Nucl Med 1990; 31: 75-83.
  • 32 Jones DH, Goldman A, Gordon I. et al. Therapeutic application of a radiolabeled monoclonal antibody in nude mice xenografted with human neuroblastoma: tumori-cidal effects and distribution studies. Br J Cancer 1985; 35: 715-20.
  • 33 Kalofonos HP, Rowlingson G, Epenetos AA. Enhancement of monoclonal antibody uptake in human colon tumor xenografts following irradiation. Cancer Res 1990; 50: 159-63.
  • 34 Kalofonos HP, Rusckowski M, Siebecker DA. et al. Imaging of tumor in patients with indium-Ill-labeled biotin and streptavidin-conjugated antibodies. J Nucl Med 1990; 31: 1791-6.
  • 35 Kaminski MS, Zasadny KR, Francis IR. et al. Radioimmunotherapy of B-cell lymphoma with I-131 anti-Bl (anti-CD20) antibody. N Engl J Med 1993; 329: 459-65.
  • 36 Kemshead JT, Coakham HB, Bullimore JA, Chandler CL, Hopkins K. Treatment of diffuse leptomeningeal malignancy by intrathecal injection on I-131 immunoconjugates. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 374-5. (abstr.)
  • 37 Khawli LA, Alauddin MM, Miller GK, Epstein AL. Improved immunotargeting of tumors with biotinylated monoclonal antibodies and radiolabeled streptavidin. Antibody Immunoconj and Radionucl 1993; 6: 13-27.
  • 38 Khazaeli MB, LoBublio AF. Pharmacokinetics and immune-response of I-131 labeled chimeric monoclonal antibodies in patients. Intern Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 369. (abstr.)
  • 39 Kimler BF, Park CH, Yakar D, Mies RM. Radiation response of human normal and leukemic cells assayed by in vitro colony formation. Int J Radiat Oncol Biol Phys 1985; 11: 809-16.
  • 40 Knox SJ, Goris ML, Wessels BW. Overview of animal studies comparing radioimmuno therapy with dose equivalent external beam irradiation. Radiother Oncol 1992; 23: 111-7.
  • 41 Langmuir VK, Sutherland RM. Dosimetry models for radioimmunotherapy. Med Phys 1988; 15: 867-73.
  • 42 Langmuir VK, Sutherland RM. Radiobiolo-gy of radioimmunotherapy: Current status. Antibody Immunoconj Radiopharm 1988; 1: 195-211.
  • 43 Langmuir VK. Radioimmunotherapy: Clinical results and dosimetric considerations. Nucl Med Biol 1992; 19: 213-25.
  • 44 Langmuir VK. The use of radioimmunotherapy in combination with bioreductive drugs. Internat Meet Radioimmunotherapy Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 6: 370-1. (abstr.)
  • 45 Larson SM, Cheung NK, Leibel SA. Radioisotope conjugates. In: Biological therapy of cancer. DeVita VT, Hellman S, Rosenberg SA. (eds). Philadelphia: Lippincott; 1991: 486-511.
  • 46 Larson SM. Editorial. Choosing the right radionuclide and antibody for intraperitoneal radioimmunotherapy. J Natl Cancer Inst 1991; 83: 1602-3.
  • 47 Lashford L, Jones D, Pritchard J, Breatnach F, Kemshead JT. Therapeutic application of radiolabeled monoclonal antibody UJ13A in children with disseminated neuroblastoma. Natl Cancer Inst Monogr 1987; 3: 53-7.
  • 48 Leichner PK, Klein JL, Garrison JB. et al. Dosimetry of I-131 labeled antiferritin in hepatoma: a model for radioimmunoglobu-lin dosimetry. Int J Radiat Oncol Biol Phys 1981; 7: 323-33.
  • 49 Leichner PK, Yang NC, Frenkel TL. et al. Dosimetry and treatment planning for 90Y labeled antiferritin in hepatoma. Int J Radiat Oncol Biol Phys 1988; 14: 1033-42.
  • 50 Lenhard RE, Order SE, Spunberg JJ, Asbell SO, Leibel SA. Isotopic immunoglobulin: A new systemic therapy for advanced Hodgkin’s disease. J Clin Oncol 1985; 3: 1296-300.
  • 51 LoBuglio AF, Wheeler RH, Trang J. et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sei USA 1989; 86: 420. (M)
  • 52 Msirikale JS, Klein JL, Schroeder J, Order SE. Radiation enhancement of radiolabeled antibody deposition in tumors. Int J Radiat Oncol Biol Phys 1987; 13: 1839-44.
  • 53 Neacy WP, Wessels BW, Bradley EM. et al. Comparison of radioimmunotherapy and 4 MeV external beam radiotherapy of human tumor xenografts in athymic mice. J Nucl Med 1986; 27: 902-3. (abstr.)
  • 54 O’Donoghue JA. Optimal therapeutic strategies for RIT. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 6: 372-3. (abstr.)
  • 55 Order SE, Stillwagon GB, Klein JL. et al. Iodine-131 antiferritin, a new treatment modality in hepatoma: a Radiation Therapy Oncology Group study. J Clin Oncol 1985; 3: 1573-82.
  • 56 Order SE, Vriesendorp HM, Klein JL, Leichner PK. A phase I study of 90Y antiferritin: dose escalation and tumor dose. Antibody Immunoconj Radiopharm 1988; 2: 163-8.
  • 57 Order SE. Presidential adress: systemic radiotherapy - the new frontier. Int J Radiat Oncol Biol Phys 1990; 18: 981-92.
  • 58 Paganelli G, Magnani P, Zito F. et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res 1991; 51: 5960-6.
  • 59 Paganelli G, Malcovati M, Fazio F. Monoclonal antibody pretargeting techniques for tumor localization: the avidin-biotin system. Nucl Med Commun 1991; 12: 211-34.
  • 60 Palme DF, Berkopec KM, Elson MK. et al. Immunoradiotherapy of renal cell carcinoma xenografts by I-131 monoclonal antibody A6H compared to single fraction external beam radiation. J Nucl Med 1987; 28: 651. (abstr.)
  • 61 Press OW, Eary JF, Badger CC. et al. Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 1989; 7: 1027-38.
  • 62 Rao DV, Howell RW. Time-dose-fractiona-tion in radioimmunotherapy: implications for selecting radionuclides. J Nucl Med 1993; 34: 1801-10.
  • 63 Reynolds JC, Del Vecchio S, Sakahara H. et al. Anti-murine response to mouse monoclonal antibodies: Clinical findings and implications. Nucl Med Biol 1989; 16: 121-5.
  • 64 Riva P, Arista A, Sturiale C. et al. Treatment of intracranial human glioblastoma by direct intratumoral administration of 131I-labelled antitenascin monoclonal antibody BC-2. Int J Cancer 1992; 51: 7-13.
  • 65 Rosen ST, Zimmer AM, Goldman-Leiken RE. et al. Radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphomas using an I-131-labeled monoclonal antibody: an Illinois Cancer Council study. J Clin Oncol 1987; 5: 562-73.
  • 66 Sautter-Bihl ML, Matzku S, Bihl H. Systemic radiotherapy with monoclonal antibodies - an experimental study with human neuroblastoma xenografts in nude mice. Strahlenther Onkol 1993; 169: 431-7.
  • 67 Sautter-Bihl ML, Bihl H. Uptake-enhancement of monoclonal antibodies by radiation pretreatment. Internat Meet Radioimmunotherapy. Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 371-2 (abstr.).
  • 68 Sautter-Bihl ML, Wessely R, Bihl H. Comparison of systemic radiotherapy with I-131-labeled monoclonal antibody BW575/9 to external beam radiotherapy in human neuroblastoma xenografts. Strahlenther Onkol 1993; 169: 595-600.
  • 69 Schroff RW, Weiden PL, Appelbaum J, Fer MF, Breitz H. Rhenium-186 labeled antibody in patients with cancer: report of a pilot phase I study. Antibody Immunoconj Radiopharm 1990; 3: 99-111.
  • 70 Senekowitsch R, Reidel G, Mollenstadt S, Kriegel H, Papst HW. Curative radioimmunotherapy of human mammary carcinoma xenografts with iodine-131-labeled monoclonal antibodies. J Nucl Med 1989; 30: 531-7.
  • 71 Sgouros G. Bone marow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993; 34: 689-94.
  • 72 Shrivastav S, Schlom J, Raubitschek A. et al. Studies concerning the effect of external irradiation on localization of radiolabeled monoclonal antibody B72.3 to human colon carcinoma xenografts. Int J Radiat Oncol Biol Phys 1989; 3: 721-9.
  • 73 Siegel JA, Wessels BW, Watson EE, Stabin MG, Vriesendrop HM. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconj Radiopharm 1990; 3: 213-33.
  • 74 Stewart JSW, Hird V, Snook D. et al. Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity and efficacy of I-131 labeled monoclonal antibodies. Int J Radiat Oncol Biol Phys 1989; 16: 405-13.
  • 75 Stewart SW. RIT in ovarian cancer: clinical results. Internat Meet Radioimmunotherapy, Oct. 1992, Stuttgart. Strahlenther Onkol 1993; 169: 368-9. (abstr.)
  • 76 Stickney DR, Gridley DS, Kirk GA, Slater JM. Enhancement of monoclonal antibody binding to melanoma with single dose radiation or hyperthermia. NCI Monogr 1987; 3: 47-52.
  • 77 Stickney DR, Anderson LD, Slater JB, Ahlem CN, Kirk GA, Schweighardt SA. et al. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res 1991; 51: 6650-5.
  • 78 Snyder WS, Ford MR, Warner GG. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose (MIRD), Pamphlet no. 5, Revised. New York: Society of Nuclear Medicine; 1978: 5-67.
  • 79 Tavassoli M, Joffey YM. Bone marrow: structure and function. New York: Alan R. Liss; 1983
  • 80 van Osdol WW, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: Consequences of a “binding site barriee”. Cancer Res 1991; 51: 4776-84.
  • 81 van Osdol WW, Sung C, Dedrick RL, Weinstein JN. A distributed pharmacokinetic model of two-step imaging and treatment protocols: application to streptavidin-conju-gated monoclonal antibodies and radiolabeled biotin. J Nucl Med 1993; 34: 1552-64.
  • 82 Volkert WA, Goeckeler GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med 1991; 32: 174-85.
  • 83 Vriesendorp HM, Herpst JM, Leichner PJ, Klein JI, Order SE. Polyclonal 90Yttrium labeled antiferritin to treat refractory Hodgkin’s disease. Int J Radiat Oncol Biol Phys 1989; 17: 815-21.
  • 84 Wessels BW, Rogues RD. Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies. Med Phys 1984; 11: 638-45.
  • 85 Wessels BW, Griffith MH. Miniature thermoluminescent dosimeter absorbed dose measurement in tumor phantom models. J Nucl Med 1986; 27: 1308-14.
  • 86 Wessels BW, Yorke E, Griffith MH. Enhancement of radiolabeled antibody therapy through heterogeneous dose deposition. Med Phys 1987; 14: 456. (abstr.)
  • 87 Wessesls BW, Vessella RL, Palme DF. et al. Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 1989; 17: 1257-63.
  • 88 Williams JR, Dillehay LE. The radiobiology of exponentially decreasing dose rates in vitro and in vivo: relevance to tumor therapy with radiolabeled antibodies. Proc 37th Ann Meet Radiat Res Soc Seattle, Wash.: pp 202 1989
  • 89 Williams JA, Edwards JA, Dillehay LE. Quantitative comparison of radiolabeled antibody and external beam radiotherapy in the treatment of human glioma xenografts. Int J Radiat Oncol Biol Physe 1992; 24: 111-7.
  • 90 Yorke ED, Beaumier PL, Wessels BW, Fritzberg AR, Morgan ACI. Optimal anti-body-radionuclide combinations for clinical radioimmunotherapy: a predictive model based on mouse pharmacokinetics. Nucl Med Biol 1991; 18: 827-35.
  • 91 Zamboni L, Pease DC. The vascular bed of red bone marrow. J Ultrastuct Res 1961; 5: 65-85.
  • 92 Zalutsky MR. Two approaches for enhancing tumor dose: The use of alpha-emitters and hyperthermia. Internat Meet Radioimmunotherapy, Oct. 1992 Stuttgart. Strahlenther Onkol 1993; 169: 369-70. (abstr.)