Nuklearmedizin 1996; 35(04): 126-131
DOI: 10.1055/s-0038-1629826
Original Article
Schattauer GmbH

Voraussetzungen für den Einsatz von Antisense-Diagnostika in der Nuklearmedizin

Prerequisites for the Use of Antisense Oligonucleotides in Nuclear Medicine
M. Hildebrandt
1   Aus dem Universitätsklinikum Ulm, Abteilung für Nuklearmedizin, Ulm, Deutschland
,
S. N. Reske
1   Aus dem Universitätsklinikum Ulm, Abteilung für Nuklearmedizin, Ulm, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen: 29. Februar 1996

Publikationsdatum:
03. Februar 2018 (online)

Zusammenfassung

Mit dem Einsatz von radiomarkierten Antisense-Oligonukleotiden als Tracer in der Nuklearmedizin eröffnet sich eine vielversprechende Perspektive, neue Wege in der bildgebenden Diagnostik zu beschreiten. Vor allem in der Tumordiagnostik scheint eine quantitative Akkumulation von Antisense-Proben, welche gegen abundant exprimierte Onkogen-mRNAs gerichtet sind, vorstellbar. Dazu ist allerdings noch eine Optimierung folgender Parameter erforderlich: (i) eine schnelle und effiziente Radiomarkierung von Oligonukleotiden mit in der Nuklearmedizin gebräuchlichen Isotopen, (ü) eine rasche Penetration der Nukleinsäure ins Zielgewebe, (iii) eine zügige Internalisierung des Tracers in die Tumorzellen, (iv) eine hohe Spezifität der Hybridbildung mit der Target-mRNA, und (v) eine hohe Stabilität des gebildeten Hybrids gegenüber intrazellulären Nukleasen.

Summary

A new promising perspective in nuclear medicine is the use of radiolabeled antisense oligonucleotides as diagnostic markers. Especially for cancer diagnostics, a quantitative accumulation of antisense probes which are directed against abundantly expressed oncogene mRNAs seems to be reasonable. However, the development of this strategy still requires an optimization of several parameters: (i) rapid and efficient radiolabeling methods, (ii) a fast penetration of the probe into the target tissue, (iii) a fast internalization into the tumor cell, (iv) an oligonucleo-tide/mRNA hybrid formation with high specificity, and (v) a high stability of the hybrid against intracellular nucleases.

 
  • Literatur

  • 1 Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sei USA 1991; 88: 7595-9.
  • 2 Bayever E, Wersen P, Bishop M, Sharp J, Tweary H, Arneson M, Pirrucello S, Rud-don R, Kessinger A, Zon G, Armitage J. Systemic administration of a phosphoro-thioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leucemia and myelodysplastic syndrome: Initial results of a phase I trial. Anti-sense Res Devel 1994; 4: 383-90.
  • 3 Cotter FE, Johnson P, Hall P, Pocock C, Al Mahdi N, Cowell JK, Morgan G. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994; 9: 3049-55.
  • 4 Dewanjee MK, Ghafouripour AK, Kapad-vanjwala M, Dewanjee S, Serafini AN, Lopez DM, Sfakianakis GN. Noninvasive imaging of c-myc oncogene messenger RNA with Indium-lll-antisense probes in a Mammary tumor-bearing mouse model. J. Nuklearmedizin 1994; 35: 1054-63.
  • 5 Dreyfuss G. Structure and function of nuclear and cytoplasmatic ribonucleopro-teins. Ann Rev Cell Biol 1986; 2: 459-98.
  • 6 Eder PS, De Vine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3’ exonuclease in plasma. Antisense Res Devel 1991; 1: 141-51.
  • 7 Geselowitz DA, Neckers LM. Analysis of oligonucleotide binding, internalization, and cellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Devel 1992; 2: 17-25.
  • 8 Gress TM, Müller-Pillasch F, Adler G, Lehrach H. European pancreatic cancer reference library system. Eur J Cancer 1994; 30: 1391-4.
  • 9 Gura T. Antisense has growing pains. Science 1995; 270: 575-7.
  • 10 Helene C, Toulmé JJ. Control of gene expression by oligodeoxynucleotides covalent-ly linked to intercalating agents and nucleic acid cleaving reagents. In: Oligodes-oxynucleotides. Antisense inhibitors of gene expression. The Macmillan Press LTD; 1989: 137-72.
  • 11 Iversen PL, Mata J, Tracewell WG, Zon G. Pharmacokinetics of an antisense phos-phorothioate oligodeoxynucleotide against rev from human immunodeficiency virus type I in the adult male rat following single injections and continous infusion. Antisense Res Devel 1994; 4: 43-52.
  • 12 Juliano RL, Akhtar S. Liposomes as a drug delivery system for antisense oligonucleotides. Antisense Res Devel 1992; 2: 165-76.
  • 13 Kientopf M, Brach MA, Hermann F. Clinical application of ribozymes. Lancet 1995; 345: 1027-9.
  • 14 Kitajima I, Shinohara T, Minor T, Bibbs L, Bilakovics J, Nerenberg M. Human T-cell Leukemia Virus Type I tax transformation is associated with increased uptake of oligodeoxynucleotides in vitro and in vivo. J Biol Chem 1992; 267: 25881-8.
  • 15 Korsmeyer SJ. Regulators of cell death. TIG 1995; 11: 101-5.
  • 16 Krieg AM, Gmelig-Meyling F, Gourley MF, Kisch WJ, Chrisey LA, Steinberg AD. Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogenous and inducible. Antisense Res Devel 1991; 1: 161-71.
  • 17 Krieg A, Tonkinson J, Matson S, Zhao Q, Saxon M, Zhang L, Bhanja U, Yakubov L, Stein CA. Modification of antisense phos-phodiester oligonucleotides by a 5’ choles-teryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sei USA 1993; 90: 1048-52.
  • 18 Larson SM. Radioimmunology: Imaging and Therapy. Cancer 1991; 67: 1253-60.
  • 19 Lehninger AL, Nelson DL, Cot MM. In: Prinzipien der Biochemie. Spektrum Akademischer Verlag; Heidelberg, Berlin, Oxford: 1994: 467-515.
  • 20 Leonetti JP, Degols G, Lebleu B, Leserman L. Biological activity of oligonucleo-tide-poly(L-Lysine) conjugates. Bioconju-gate Chem 1990; 1: 149-51.
  • 21 Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B. Intracellular distribution of micro-injected antisense oligonucleotides. Proc Natl Acad Sei USA 1991; 88: 2702-6.
  • 22 Lima WF, Monia BP, Ecker DJ, Freier SM. Implication of RNA structure on antisense oligonucleotide hybridization. Biochemistry 1992; 31: 12055-61.
  • 23 Loke SL, Stein CA, Zhang XH, Mori K, Subasinghe C, Cohen LS, Neckers LM. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sei USA 1989; 86: 3474-8.
  • 24 Milligan J, Matteucci M, Martin J. Current concepts in antisense drug design. J Med Chem 1993; 36: 1923-37.
  • 25 Rittner K, Burmester C, Sczakiel G. In vitro selection of fast-hybridizing and effective antisense RNAs directed against human immundeficiency virus type 1. Nucl Acids Res 1993; 21: 1381-7.
  • 26 Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL. Biodistribution and metabolism of internally 3-H labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphothioate. Mol Pharmocol 1994; 45: 932-4.
  • 27 Shojy Y, Akhtar S, Periasamy A, Herman B, Juliano RL. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucl Acids Res 1991; 19: 5543-50.
  • 28 Stein CA, Cohen J. Oligonucleotides as inhibitors of gene expression: a review. Cancer Research 1988; 48: 2659-68.
  • 29 Stein CA, Tonkinson JL, Zhang L, Yakubov L, Gervasoni J, Taub R, Rotenberg SA. Dynamics of internalization of phosphodiester oligodeoxynucleotides in HL60 cells. Biochemistry 1993; 32: 4855-61.
  • 30 Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents - is the bullet really magical?. Science 1994; 261: 1004-11.
  • 31 Stein CA, Krieg AM. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res Devel 1994; 4: 67-9.
  • 32 Temsamani J, Kubert M, Tang J, Padmapriya A, Agrawal S. Cellular uptake ofoligo-deoxynucleotide phosphorothioates and their analogs. Antisense Res and Devel 1994; 4: 35-42.
  • 33 Tidd DM. A potential role for antisense oligonucleotide analogues in the development of oncogene targeted cancer chemotherapy. Anticancer Res 1990; 10: 1169-82.
  • 34 Toulme JJ. Artificial regulation of gene expression by complementary oligonucleotides - an overview. In: Antisense RNA and DNA. Wiley-Liss; Inc; 1992: 175-94.
  • 35 Urbain JLC, Shore SK, Vekemans MC, Cosenza SC, DeRiel K, Patel GV, Charkes ND, Malmund LS, Reddy EP. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?. Eur J Nucl Med 1995; 22: 499-504.
  • 36 Vos MG, Visser GM, Pike VW, Davenport RJ, Vaalburg W. Synthesis of 5’-deoxy-5’-fluoro-thymidine: a bifunctional agent to investigate DNA synthesis rate and a useful tool as a terminal building unit in antisense ODN labeling for PET. Abstract, Xlth int. Symposium on Radiopharmaceutical Chem 1995: 332-47.
  • 37 Walder RY, Walder JA. Role of RNAseH in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sei USA 1988; 85: 5011-5.
  • 38 Yakubov LA, Deeva EA, Zarytova VF, Ivanova EM, Ryte AS, Yurchenko VL, Vlassov VV. Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors?. Proc Natl Acad Sei USA 1989; 86: 6454-8.
  • 39 Zendegui JG, Vasquez KM, Tinsley JH, Kessler DJ, Hogan ME. In vivo stability and kinetics of absorption and disposition of 3’ phosphopropyl amine oligonucleotides. Nucl Acids Res 1992; 20: 307-14.