RSS-Feed abonnieren
DOI: 10.1055/s-0038-1629956
Das menschliche Belohnungssystem
Erkenntnisse der funktionellen Bildgebung und klinische ImplikationenThe human reward systeminsights from neuroimaging and clinical implicationsPublikationsverlauf
Publikationsdatum:
31. Januar 2018 (online)

Zusammenfassung
Belohnungen, oder allgemeiner positive Verstärkung, beeinflussen unser tägliches Leben in hohem Maße. Sie stellen Handlungsanreize und Motivatoren dar, und eine angemessene Reaktion auf lohnende Anreize ist eine wichtige Voraussetzung für Entscheidungsfindung und zielgerichtetes, effektives Verhalten. Die funktionelle Bildgebung hat in jüngster Zeit viel zu einem besseren Verständnis beigetragen, wie Belohnungen im menschlichen Gehirn verarbeitet werden. Befunde aus der tierexperimentellen Forschung wurden bestätigt und differenziert und neue Erkenntnisse zu Motivation und Lernvorgängen im Zusammenhang mit Belohnungen gewonnen. Für die wichtigsten beteiligten Strukturen, das ventrale Striatum, den orbitofrontalen Kortex und die Amygdala, wurden differenzierte Funktionen herausgearbeitet. Die so gewonnenen Erkenntnisse über das mesolimbisch-mesokortikale Dopaminsystem, das auf diese Regionen einwirkt, können nicht nur helfen, Reaktionen auf Belohnungsreize besser zu verstehen, sondern auch helfen, die Pathophysiologie von Suchterkrankungen, der Parkinson-Krankheit und Schizophrenie aufzuklären.
Summary
Rewards and positive reinforcement highly influence our daily life. An adequate reaction to incentive stimuli is an important prerequisite for decision-making and goal oriented, effective behaviour. Functional imaging recently gave new insights how rewards are processed in the human brain. Findings from animal studies were replicated and differentiated providing a new understanding of motivation and learning in the context of rewards. Differential functions were found for the most important structures involved, the ventral striatum, the orbitofrontal cortex and the amygdala. But knowledge about the mesolimbic-mesocortical dopaminergic system that interconnects the brain regions of the reward system can also help to develop a better understanding of the pathophysiology of drug abuse, Parkinson’s disease and schizophrenia.
-
Literatur
- 1 Aharon I, Etcoff N, Ariely D, Chabris CF, O’Connor E, Breiter HC. Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 2001; 32: 537-51.
- 2 Anderson AK. et al. Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 2003; 6: 196-202.
- 3 Apicella P. et al. Responses to reward in monkey dorsal and ventral striatum. Exp Brain Res 1991; 85: 491-500.
- 4 Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002; 3: 563-73.
- 5 Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D. Reward circuitry activation by noxious thermal stimuli. Neuron 2001; 32: 927-46.
- 6 Bechara A. et al. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994; 50: 7-15.
- 7 Berns GS, McClure SM, Pagnoni G, Montague PR. Predictability modulates human brain response to reward. J Neurosci 2001; 21: 2793-8.
- 8 Berridge KC, Robinson TE. Parsing reward. Trends Neurosci 2003; 26: 507-13.
- 9 Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 2001; 98: 11818-23.
- 10 Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 2001; 30: 619-39.
- 11 Breiter HC. et al. Acute effects of cocaine on human brain activity and emotion. Neuron 1997; 19: 591-611.
- 12 Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci 2001; 2: 352-63.
- 13 Carelli RM, King VC, Hampson RE, Deadwyler SA. Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Res 1993; 626: 14-22.
- 14 Chang JY. et al. Comparison of mesocortico-limbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci 1998; 18: 3098-115.
- 15 Cohen JD, Servan-Schreiber D. Context, cortex and dopamine. A connectionist approach to behaviour and biology in schizophrenia. Psychol Rev 1992; 99: 45-77.
- 16 Delgado MR. et al. Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 2000; 84: 3072-7.
- 17 Delgado MR, Stenger VA, Fiez JA. Motivation-dependent responses in the human caudate nucleus. Cereb Cortex 2004; 14: 1022-30.
- 18 Elliott R, Friston KJ, Dolan RJ. Dissociable neural responses in human reward systems. J Neurosci 2000; 20: 6159-65.
- 19 Elliott R, Newman JL, Longe OA, Deakin JF. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci 2003; 23: 303-7.
- 20 Erk S, Spitzer M, Wunderlich AP, Galley L, Walter H. Cultural objects modulate reward circuitry. Neuroreport 2002; 13: 2499-503.
- 21 Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003; 299: 1898-902.
- 22 Gottfried JA. et al. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 2003; 301: 1104-7.
- 23 Hamann S, Mao H. Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport 2002; 13: 15-9.
- 24 Hollerman JR, Tremblay L, Schultz W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 1998; 80: 947-63.
- 25 Hommer DW. et al. Amygdalar recruitment during anticipation of monetary rewards: an event-related fMRI study. Ann N Y Acad Sci 2003; 985: 476-8.
- 26 Hornak J. et al. Reward-related reversal learning after surgical excisions in orbitofrontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 2004; 16: 463-78.
- 27 Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 2003; 160: 13-23.
- 28 Kienast T, Heinz A. Suchterkrankungen. In: Walter H. (Hrsg). Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Methodische Grundlagen und klinische Anwendungen. Stuttgart: Schattauer; 2004: 212-34.
- 29 Kirsch P. et al. Anticipation of reward in a non-aversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 2003; 20: 1086-95.
- 30 Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 2001; 21: RC159.
- 31 Knutson B. et al. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12: 3683-7.
- 32 Knutson B. et al. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 2000; 12: 20-7.
- 33 Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 2003; 13: 1064-71.
- 34 Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 1992; 67: 145-63.
- 35 May JC, Delgado MR, Dahl RE, Stenger VA, Ryan ND, Fiez JA, Carter CS. Event-related functional magnetic resonance imaging of reward-related brain circuitry in children and adolescents. Biol Psychiatry 2004; 55: 359-66.
- 36 McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive learning task activate human striatum. Neuron 2003; 38: 339-46.
- 37 McClure SM, York MK, Montague PR. The neural substrates of reward processing in humans: the modern role of FMRI. Neuroscientist 2004; 10: 260-8.
- 38 Mirenowicz J, Schultz W. Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 1994; 72: 1024-7.
- 39 Mobbs D, Greicius MD, Abdel-Azim E, Menon V, Reiss AL. Humor modulates the mesolimbic reward centers. Neuron 2003; 40: 1041-8.
- 40 Montague PR, Berns GS. Neural economics and the biological substrates of valuation. Neuron 2002; 36: 265-84.
- 41 Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 1996; 383: 812-5.
- 42 O’Doherty J, Critchley H, Deichmann R, Dolan RJ. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci 2003; 23: 7931-9.
- 43 O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 2001; 4: 95-102.
- 44 O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron 2003; 38: 329-37.
- 45 O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron 2002; 33: 815-26.
- 46 Parkinson JA, Cardinal RN, Everitt BJ. Limbic cortical-ventral striatal systems underlying appetitive conditioning. Prog Brain Res 2000; 126: 263-85.
- 47 Rilling J, Gutman D, Zeh T, Pagnoni G, Berns G, Kilts C. A neural basis for social cooperation. Neuron 2002; 35: 395-405.
- 48 Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex 2000; 10: 284-94.
- 49 Romo R, Schultz W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol 1990; 63: 592-606.
- 50 Schultz W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 1986; 56: 1439-61.
- 51 Schultz W. The Reward Signal of Midbrain Dopamine Neurons. News Physiol Sci 1999; 14: 249-55.
- 52 Schultz W. Multiple reward signals in the brain. Nat Rev Neurosci 2000; 1: 199-207.
- 53 Schultz W, Tremblay L, Hollerman JR. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 2000; 10: 272-84.
- 54 Shidara M, Aigner TG, Richmond BJ. Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J Neurosci 1998; 18: 2613-25.
- 55 Small DM. Toward an understanding of the brain substrates of reward in humans. Neuron 2002; 33: 668-71.
- 56 Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 2001; 124: 1720-33.
- 57 Spitzer M. A neurocompuatational approach to delusions. Compr Psychiatry 1995; 36: 83-105.
- 58 Spitzer M. A cognitive neuroscience view of schizophrenic thought disorder. Schizophrenia Bulletin 1997; 23: 29-50.
- 59 Spitzer M. Models of schizophrenia: from neuroplasticity and dopamine to psychopathology and clinical management. In: Kapur S, Lecrubier Y. (eds.) Dopamine in the Pathophysiology and Treatment of Schizophrenia. London, New York: Martin Dunitz, Taylor & Francis Group; 2003: 155-75.
- 60 Spitzer M. Selbstbestimmen. Heidelberg: Spektrum Akademischer Verlag; 2003
- 61 Sutton RS, Barto AG. Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 1981; 88: 135-70.
- 62 Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature 1999; 398: 704-8.
- 63 Tremblay L, Schultz W. Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 2000; 83: 1864-76.
- 64 Walter H. Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart: Schattauer; 2004
- 65 Walter H, Spitzer M. The cognitive neuroscience of agency. In: David A, Kircher T. (eds). The self in neuroscience and psychiatry. Cambridge University Press; 2003: 436-44.
- 66 Zalla T, Koechlin E, Pietrini P, Basso G, Aquino P, Sirigu A, Grafman J. Differential amygdala responses to winning and losing: a functional magnetic resonance imaging study in humans. Eur J Neurosci 2000; 12: 1764-70.
- 67 Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS. Human striatal response to salient nonrewarding stimuli. J Neurosci 2003; 23: 8092-7.
- 68 Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS. Human striatal responses to monetary reward depend on saliency. Neuron 2004; 42: 509-17.