Nervenheilkunde 2005; 24(07): 603-610
DOI: 10.1055/s-0038-1629995
Originaler Artikel
Schattauer GmbH

Neurofunktionelle Grundlagen unipolarer depressiver Störungen

Die Rolle limbisch-kortikaler Netzwerke in der Diagnostik und TherapieNeurofunctional mechanisms of unipolar depressive disordersThe role of limbic-cortical networks in diagnostic and therapy
N. Vasic
1   Abteilung Psychiatrie III der Universitätsklinik Ulm (Ärztlicher Direktor: Prof. Dr. Dr. M. Spitzer)
,
R. C. Wolf
1   Abteilung Psychiatrie III der Universitätsklinik Ulm (Ärztlicher Direktor: Prof. Dr. Dr. M. Spitzer)
,
H. Walter
1   Abteilung Psychiatrie III der Universitätsklinik Ulm (Ärztlicher Direktor: Prof. Dr. Dr. M. Spitzer)
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. Januar 2018 (online)

Zusammenfassung

Depressive Erkrankungen gehören zu den wichtigsten psychiatrischen Störungsbildern und entwickeln sich zu einem gravierenden gesundheitlichen Problemen in der Gesellschaft. Verfahren der strukturellen und funktionellen Bildgebung erlauben es, neuronale Korrelate depressiver Symptome objektiv zu messen. Die Ergebnisse können dabei helfen, die neuronalen Mechanismen depressiver Störungen aufzuklären und können prinzipiell auch eingesetzt werden, um die Effekte therapeutischer Maßnahmen zu objektivieren. In diesem Beitrag werden neue Ergebnisse funktioneller Studien dargestellt und in gegenwärtige neurofunktionelle Modelle der Depression eingeordnet.

Summary

Depressive disorders are one of the most important disorders in psychiatry and become one of the most relevant health problems in our society. Structural and functional neuroimaging provide means to measure neural correlates of depression objectively and to use those measures to uncover neural mechanisms underlying depressive disorders or to evaluate the effects of therapy. In this article, we give a review of some of the latest neuroimaging findings and integrate them into recently proposed neurofunctional models of depression.

 
  • Literatur

  • 1 Alexander GE. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Reviews in Neuroscience 1986; 9: 357-81.
  • 2 Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research 1990; 85: 119-46.
  • 3 Altshuler LL. et al. Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiatry 1998; 55: 663-4.
  • 4 Bagby RM, Joffe RT, Parker JDA. Major depression and the five-factor model of personality. J Personal Disord 1995; 9: 224-34.
  • 5 Bench CJ. et al. The anatomy of melancholia - focal abnormalities of cerebral blood flow in major depression. Psychol Med. 1992; 22: 607-15.
  • 6 Bench CJ. et al. Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 1993; 31: 907-22.
  • 7 Berman KF. et al. Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. Br J Psychiatry 1993; 162: 183-92.
  • 8 Bhagwagar Z. et al. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry. 2004; 9: 386-92.
  • 9 Bowley MP. et al. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 2002; 52: 404-12.
  • 10 Brannan SK, Mayberg HS. McGinnis. Cingulate metabolism predicts treatment response: a replication. Biol Psychiatry 2000; 47: 107S.
  • 11 Bremner JD. et al. Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115-8.
  • 12 Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000; 4: 215-22.
  • 13 Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995; 25: 615-41.
  • 14 Coffey CE. et al. Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology 1992; 42: 527-36.
  • 15 Coffey CE. et al. Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Arch Gen Psychiatry 1993a 50: 7-16.
  • 16 Coffey CE. et al. The dexamethasone suppression test and quantitative cerebral anatomy in depression. Biol Psychiatry 1993b 33: 442-9.
  • 17 Davidson RJ. et al. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry 2003; 160: 64-75.
  • 18 Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation- a possible prelude to violence. Science 2000; 28: 591-4.
  • 19 Dolan RJ. et al. Neuropsychological dysfunction in depression: the relationship to regional cerebral blood flow. Psychol Med. 1994; 24: 849-57.
  • 20 Doherty J. et al. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001; 4: 95-102.
  • 21 Dougherty DD. et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg. 2003; 99: 1010-7.
  • 22 Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res. 2000; 126: 413-31.
  • 23 Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002; 12: 527-44.
  • 24 Drevets WC. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 24: 824-7.
  • 25 Drevets WC, Raichle ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmac Bull 1992; 28: 261-74.
  • 26 Drevets WC. et al. A functional anatomical study of unipolar depression. J Neurosci. 1992; 12: 3628-41.
  • 27 Ebert D, Ebmeier KP. The role of the cingulate gyrus in depression: from functional anatomy to neurochemistry. Biol Psychiatry 1996; 15: 1044-50.
  • 28 Elliott R. The neuropsychological profile in unipolar depression. Trends in Cognitive Sciences 1998; 2: 447-54.
  • 29 Elliott R. et al. Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med. 1997; 27: 931-42.
  • 30 Erk S, Walter H, Spitzer M. Functional Neuroimaging of Depression. Perspectives in Affective Disorders. Adv Biol Psychiatry 2000; 21: 63-69.
  • 31 Frodl T. et al. Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 2002; 51: 708-14.
  • 32 Fu CHY, Walsh ND, Drevets WC. Neuroimaging studies of mood disorders. In: Fu CHY, Senior C, Russell TA, Weinberger D, Murray R. (eds). Neuroimaging in psychiatry. Washington: MD, Taylor & Francis; 2003: 131-69.
  • 33 Galynker II. et al. Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med. 1998; 39: 608-12.
  • 34 George MS. et al. Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). J Neuropsychiatry Clin Neurosci. 1997; 9: 55-63.
  • 35 George MS, Ketter TA, Post RM. SPECT and PET imaging in mood disorders. J Clin Psychiatry 1993; 54 Suppl: 6-13.
  • 36 Goldapple K. et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry. 4 61: 34-41.
  • 37 Holthoff VA. et al. Changes in brain metabolism associated with remission in unipolar major depression. Acta Psychiatr Scand. 2004; 110: 184-94.
  • 38 Husain MM. et al. A magnetic resonance imaging study of putamen nuclei in major depression. Psychiatry Res. 1991; 40: 95-9.
  • 39 Kendler KS. et al. The prediction of major depression in women: toward an integrated etiologic model. Am J Psychiatry. 1993; 150: 1139-48.
  • 40 Kennedy SH. et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001; 158: 899-905.
  • 41 Krishnan KR. et al. Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Arch Gen Psychiatry 1992; 49: 553-7.
  • 42 Kumar A. et al. Quantitative anatomic measures and comorbid medical illness in late-life major depression. Am J Geriatr Psychiatry. 1997; 5: 15-25.
  • 43 Liotti M, Mayberg HS. The role of functional neuroimaging in the neuropsychology of depression. J Clin Exp Neuropsychol. 2001; 23: 121-36.
  • 44 Liotti M. et al. An ERP study of mood provocation in remitted depression. Abstracts of the Society for Neuroscience 1996; 23: 1657.
  • 45 Lu L. et al. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp Neurol. 2003; 183: 600-9.
  • 46 MacQueen GM. et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 4: 1387-92.
  • 47 Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28: 1562-71.
  • 48 Mayberg HS. Modulating limbic-cortical circuits in depression: targets of antidepressant treatments. Semin Clin Neuropsychiatry. 2002; 7: 255-68.
  • 49 Mayberg HS. Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am. 2003; 13: 805-15.
  • 50 Mayberg HS. et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport 1997; 3: 1057-61.
  • 51 Mayberg HS. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999; 156: 675-82.
  • 52 Meaney MJ. et al. Molecular basis for the development of individual differences in the hypothalamicpituitary-adrenal stress response. Cell Mol Neurobiol. 1993; 13: 321-47.
  • 53 Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994; 6: 358-70.
  • 54 Mega MS. et al. The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiatry Clin Neurosci. 1997; 9: 315-30.
  • 55 Messa C. et al. 5-HT(2A) receptor binding is reduced in drug-naive and unchanged in SSRI-responder depressed patients compared to healthy controls: a PET study. Psychopharmacology (Berl). 2003; 167: 72-8.
  • 56 Meyer JH. et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport. 2001; 12: 4121-5.
  • 57 Michaud CM, Murray CJ, Bloom BR. Burden of disease – implications for future research. JAMA 2001; 285: 535-9.
  • 58 Nauta WJ. Neural associations of the frontal cortex. Acta Neurobiol Exp 1972; 32: 125-40.
  • 59 Navarro V. et al. Frontal cerebral perfusion after antidepressant drug treatment versus ECT in elderly patients with major depression: a 12-month follow-up control study. J Clin Psychiatry 1972; 65: 656-61.
  • 60 Navarro V. et al. Prognostic value of frontal functional neuroimaging in late-onset severe major depression. Br J Psychiatry 2004; 184: 306-11.
  • 61 Neumeister A. et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004; 21: 589-91.
  • 62 Overstreet DH. The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev. 1993; 17: 51-68.
  • 63 Paquette V. et al. „Change the mind and you change the brain“: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 2003; 18: 401-9.
  • 64 Rajkowska G. Depression: what we can learn from postmortem studies. Neuroscientist 2003; 9: 273-84.
  • 65 Rajkowska G. et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 1: 1085-98.
  • 66 Santarelli L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 8: 805-9.
  • 67 Seminowicz DA. et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004; 22: 409-18.
  • 68 Shah PJ. et al. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 1998; 172: 527-32.
  • 69 Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338-52.
  • 70 Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 1998; 22: 2023-8.
  • 71 Simpson HB. et al. Serotonin transporters in obsessive-compulsive disorder: a positron emission tomography study with [(11)C]McN 5652. Biol Psychiatry. 2003; 15: 1414-21.
  • 72 Soares JC, Mann JJ. The functional neuroanatomy of mood disorders. J Psychiatr Res 1997; 31: 393-432.
  • 73 Stefurak T, Mahurin R, Soloman D. Response specific regional metabolism changes with fluoxetine treatment in depressed Parkinson´s patients. Movement Disorders 2001; 16 (Suppl. 01) S39.
  • 74 Strakowski SM, Adler CM, DelBello MP. Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder?. Bipolar Disord 2002; 4: 80-8.
  • 75 Strakowski SM. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiatry 1999; 56 (03) 254-60.
  • 76 Swerdlow NR, Koob GF. Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sci 1987; 10: 197-245.
  • 77 Tebartz van Elst L. Bildgebende Befunde bei affektiven Störungen. In: Walter H. (Hrsg.). Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart, New York: Schattauer Verlag; 2004: 274-302.
  • 78 Vogel G. Neuroscience. Depression drugs' powers may rest on new neurons. Science 2003; 8: 757.
  • 79 Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol. 1987; 8: 271-89.
  • 80 Walter H. Neurowissenschaft der Emotionen und Psychiatrie. Nervenheilkunde 1999; 18: 116-126.
  • 81 Walter H. (Hrsg.). Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart, New York: Schattauer Verlag; 2004
  • 82 Yatham LN. et al. Brain serotonin2 receptors in major depression: a positron emission tomography study. Arch Gen Psychiatry 2000; 57: 850-8.