Osteologie 2013; 22(02): 129-135
DOI: 10.1055/s-0038-1630110
Original and review articles
Schattauer GmbH

Active Vitamin D prevents anti-osteogenic effect of AGEs on human osteoblasts

Aktives Vitamin D-Hormon verhindert antiosteogene Effekte von AGEs auf humane Osteoblasten
P. Oelzner
1   Division of Rheumatology/Osteology, Department of Internal Medicine III, University of Jena, Germany
,
S. Franke
1   Division of Rheumatology/Osteology, Department of Internal Medicine III, University of Jena, Germany
,
G. Hofmann
2   Department of Traumatology, Hand and Reconstructive Surgery, University of Jena, Germany
,
G. Wolf
3   Division of Nephrology, Department of Internal Medicine III, University of Jena, Germany
› Author Affiliations
Further Information

Publication History

received: 12 December 2012

accepted after revision: 20 February 2013

Publication Date:
30 January 2018 (online)

Summary

Objective: To investigate whether 1,25-dihydroxyvitamin D3 (1,25D3) is able to prevent advanced glycation end products (AGE)-induced alterations of osteoblasts (OB).

Methods: Human OB were isolated and cultured from bone tissue of ten patients with knee osteoarthritis and joint replacement. Cells from passages three to seven were treated with control bovine serum albumin (Co-BSA), AGE-BSA or AGE-BSA supplemented with 1,25D3 in two different concentrations (medium concentrations: 5 mg/ml AGE-BSA and Co-BSA, respectively; 100 pmol/l and 500 pmol/l 1,25D3). mRNA and protein expression of bone alkaline phosphatase (bALP), collagen type 1 (Col1) and osteocalcin (OC) were investigated by real-time PCR and Western Blot-analysis, respectively.

Results: AGE-BSA reduced mRNA expression of bALP, Col1 and OC in comparison to Co-BSA significantly. Addition of 1,25D3 in both concentrations completely prevented the AGEBSA-induced suppression and resulted in a further increase of mRNA and protein expression of bALP, Col1 and OC.

Discussion: 1,25D3 in a physiological concentration prevents anti-osteogenic effects of AGEs on human OB. Therefore, 1,25D3 treatment should be beneficial in diseases associated with AGE accumulation, impaired bone formation and vitamin D deficiency such as senile osteoporosis and rheumatoid arthritis.

Zusammenfassung

Ziel unserer Studie war es, zu evaluieren, ob 1,25-Dihydroxycholecalciferol (1,25D3) durch Advanced Glycation End Products (AGEs) induzierte Alterationen von Osteoblasten (OB) verhindern kann.

Methodik: Humane OB wurden aus Knochengewebe von zehn Patienten mit Gonarthrose und Kniegelenkersatzoperation isoliert und kultiviert. Zellen aus den Passagen drei bis sieben erhielten eine Behandlung mit Rinderserumalbumin (Kontroll-BSA), AGEBSA bzw. AGE-BSA + 1,25D3 (Mediumkonzentrationen: 5 mg/ml AGE-BSA bzw. Kontroll-BSA; 100 pmol/l und 500 pmol/l 1,25D3). MRNA- und Protein-Expression von knochenspezifischer alkalischer Phosphatase (bALP), Kollagen I (Col1) und Osteokalzin (OC) wurden mittels quantitativer RT-PCR bzw. Western Blot-Analyse untersucht.

Ergebnisse: AGE-BSA reduzierte die mRNAExpression of bALP, Col1 und OC im Vergleich zu Kontroll-BSA signifikant. Die zusätzliche Gabe von 1,25D3 in beiden Konzentrationen verhinderte die AGE-BSA-induzierte Suppression vollständig und führte zu einem weiteren Anstieg der mRNA und Protein-Expression von bALP, Col1 und OC.

Diskussion: 1,25D3 in physiologischer Konzentration antagonisiert antiosteogene Effekte von AGEs auf humane OB. Eine Behandlung mit 1,25D3 dürfte daher besonders bei Erkrankungen nützlich sein, die mit AGE-Akkumulation, gestörter Knochenformation und Vitamin-D-Defizienz assoziiert sind, wie senile Osteoporose und rheumatoide Arthritis.

 
  • References

  • 1 Maillard-Lefebvre H, Boulanger E, Daroux M. et al. Soluble receptor for Advanced glycation end products: a new biomarker in diagnosis and prognosis in chronic inflammatory diseases. Rheumatology 2009; 48: 1190-1196.
  • 2 Hein G, Wiegand R, Lehmann G. et al. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum in patients with osteoporosis. Rheumatology 2003; 42: 1242-1246.
  • 3 Yamagishi S. Role of advanced glycation end-products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 2011; 12: 2096-2102.
  • 4 Franke S, Siggelkow H, Wolf G. et al. Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 2007; 113: 154-161.
  • 5 Odetti P, Rossi S, Monacelli F. et al. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 2005; 1043: 710-717.
  • 6 Yan W, Li X. Impact of diabetes and its treatments on skletetal diseases. Front Med. 2013 [Epub ahead of print].
  • 7 Miyata T, Kawai R, Taketomi S. et al. Possible involvement of Advanced glycation end-products in bone resorption. Nephrol Dial Transplant 1996; 11 (Suppl) 54-57.
  • 8 Ji JD, Woo JH, Choi SJ. et al. Advanced glycation end-products (AGEs): A novel therapeutic target in patients with rheumatoid arthritis. Medical Hypotheses 2009; 73: 201-202.
  • 9 Hein G, Weiss C, Lehmann G. et al. Advanced glycation end product modification of bone proteins and bone remodelling. Hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 2006; 65: 101-104.
  • 10 Franke S, Rüster C, Pester J. et al. Advanced glycation end products affect growth and function of osteoblasts. Clin Exp Rheumatol 2011; 29: 650-660.
  • 11 Atkins GJ, Anderson PH, Findlay DM. et al. Metabolism of vitamin D3 in osteoblasts: Evidence for autocrine and paracrine activities of 1alpha,25-dihydroxyvitamn D3. Bone 2007; 40: 1517-1528.
  • 12 St Arnaud R. The direct role of vitamin D on bone homeostasis. Arch Biochem Biophys 2008; 473: 225-230.
  • 13 Anderson PH, Atkins GJ. The skeleton as an intracrine organ for vitamin D metabolism. Mol Aspects Med 2008; 29: 397-406.
  • 14 Gardiner EM, Baldock PA, Thomas GP. et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 2000; 14: 1908-1916.
  • 15 Kveiborg M, Rattan SI, Clark BF. et al. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture. J Cell Physiol 2001; 186: 298-306.
  • 16 Oelzner P, Müller A, Deschner F. et al. Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tissue Int 1998; 62: 193-198.
  • 17 Rossini M, Bongi SM, La Montagna G. et al. Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Res Ther 2010; 12: R216.
  • 18 Talmor-Barkan Y, Bernheim J, Green J. et al. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J Steroid Biochem Mol Biol 2011; 124: 19-24.
  • 19 Zitman-Gal T, Golan E, Green J. et al. Vitamin D receptor activation in a diabetic-like environment. Potential role in the activity of the endothelial pro-inflammatory and thioredoxin pathways. J Steroid Biochem Mol Biol 2012; 132: 1-7.
  • 20 Muscogiuri G, Sorice GP, Ajjan R. et al. Can vitamin D deficiency cause diabetes and cardiovascular diseases ? Present evidence and future perpectives. Nutr Metab Cardiovasc Dis 2012; 22: 81-87.
  • 21 Gradinaru D, Borsa C, Ionescu C. et al. Vitamin D status and oxidative stress markers in elderly with impaired fasting glucose and type 2 diabetes mellitus. Aging clin Exp Res. 2012 [Epub ahead of print].
  • 22 Kerr GS, Sabahi I, Richards JS. et al. Prevalence of vitamin D insufficiency/deficiency in rheumatoid arthritis and associations with disease severity and activity. J Rheumatol 2011; 38: 53-59.
  • 23 Turner AG, Anderson PH, Morris HA. Vitamin D and bone health. Scand J Clin Lab Invest Suppl 2012; 243: 65-72.
  • 24 Talmor Y, Bernheim J, Klein O. et al. Calcitriol blunts pro-atherosclerotic parameters through NFkappaB and p38 in vitro. Eur J Clin Invest 2008; 38: 548-554.
  • 25 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 29. (9) e45.
  • 26 Franke S, Sommer M, Rüster C. et al. Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells. Arthritis Res Ther 2009; 11: R136.
  • 27 Siggelkow H, Rebenstorff K, Kurre W. et al. Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J Cell Biochem 1999; 75: 22-35.
  • 28 Van Driel M, Koedam M, Buurman CJ. et al. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem 2006; 99: 922-935.
  • 29 Maetaha Y, Takamizawa S, Ozawa S. et al. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol 2006; 25: 47-58.
  • 30 Sanguineti R, Storage D, Monacelli F. et al. Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 2008; 1126: 166-172.
  • 31 Owen TA, Aronow MS, Barone LM. et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 1991; 128: 1496-1504.
  • 32 Sooy K, Sabbagh Y, Demay MB. Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro. J Cell Biochem 2005; 94: 81-87.
  • 33 Misof BM, Roschger P, Tesch W. et al. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentraton without affecting structural properties of bone mineral crystals. Calcif Tissue Int 2003; 73: 251-257.
  • 34 Baldock PA, Thomas GP, Hodge JM. et al. Vitamin D action and regulation of bone remodelling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res 2006; 21: 1618-1626.
  • 35 Paredes R, Arriagada G, Cruzat F. et al. Bone specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol 2004; 24: 8847-8861.
  • 36 Krum SA, Chang J, Miranda-Carboni G. et al. Novel functions of NFκB: inhibition of bone formation. Nat Rev Rheumatol 2010; 6: 607-611.
  • 37 Lu X, Farmer P, Rubin J. et al. Integration of the NfkappaB p65 subunit into the vitamin D receptor transcriptional complex: identification of p65 domains that inhibit 1,25-dihydroxyvitamin. J Cell Biochem 2004; 92: 833-848.
  • 38 Ebert J, Jovanovic M, Ulmer M. et al. Down regulation by nuclear factor kappaB of human 25-hydroxyvitamin D3 1alpha-hydroxylase promoter. Mol Endocrinol 2004; 18: 2440-2450.
  • 39 Tarroni P, Villa I, Mrak E. et al. Microarray analysis of 1,25(OH)2D3 regulated gene expression in human primary osteoblasts. J Cell Biochem 2012; 113: 640-649.