Kinder- und Jugendmedizin 2008; 08(03): 137-149
DOI: 10.1055/s-0038-1630890
Immundefekte
Schattauer GmbH

T-zelluläre und kombinierte T- und B-Zell-Immundefekte

T-cellular and combined T- and B-cell immunodeficiencies
Wilma Mannhardt-Laakmann
1   Zentrum Kinder und Jugendmedizin, Johannes Gutenberg Universität, Mainz (Direktor: Prof. Dr. med. F. Zepp)
,
Pirmin Habermehl
1   Zentrum Kinder und Jugendmedizin, Johannes Gutenberg Universität, Mainz (Direktor: Prof. Dr. med. F. Zepp)
,
Fred Zepp
1   Zentrum Kinder und Jugendmedizin, Johannes Gutenberg Universität, Mainz (Direktor: Prof. Dr. med. F. Zepp)
› Author Affiliations
Further Information

Publication History

Eingegangen: 10 December 2007

angenommen: 17 December 2007

Publication Date:
27 January 2018 (online)

Zusammenfassung

Primäre T-zelluläre Immundefekte umfassen eine Gruppe seltener Erkrankungen, die Folge genetisch bedingter Störungen der Reifung und Differenzierung bzw. der Aktivierung und Funktion des T-zellulären Immunsystems sind. Wegen der zentralen immunregulatorischen Funktion der T-Zellen besteht sekundär häufig auch ein humoraler Immundefekt, sodass es sich funktionell meist um kombinierte Immundefekte handelt, auch wenn B-Lymphozyten prinzipiell vorhanden sind.

Die klinische Einteilung T-zellulärer und kombinierter Immundefekte beruht einerseits auf klinischen Befunden und darüber hinaus auf immunologisch krankheitsspezifischen Auffälligkeiten, die sich aus morphologischen, funktionellen und phänotypischen Untersuchungen des lymphatischen Systems ergeben. Die Möglichkeit, die zugrunde liegenden Defekte zunehmend molekulargenetisch zu definieren, erlaubt eine Einteilung nach pathogenetischen Gesichtspunkten. Dies hat bedeutende therapeutische Konsequenzen. Mit dem wachsenden Verständnis der molekularen Pathogenese einer Immundefekterkrankung erweitern sich die Therapiemöglichkeiten, insbesondere die Stammzelltherapie, um die Option einer Gentherapie. Die folgende Übersichtsarbeit hat zum Ziel, die klinischen Charakteristika der wichtigsten T-zellulären und kombinierten Immundefekte darzustellen und einen Einblick in das diagnostische und therapeutische Vorgehen zu geben.

Summary

Primary T-cell immunodeficiencies consist of a group of rare genetically determined abnormalities during T-cell maturation and differentiation as well as T-cell activation and function. Although B-lymphocytes may arise a humoral deficiency is often associated because the immunoregulatory T-cell-function is impaired.

For years the classification of the “T-cell” as well as of the “combined T- and B-cell immunodeficiencies” has followed clinical aspects and has been influenced by immunological, phenotypical and functional laboratory results. The increasing knowledge about gene mutations being the cause of many different T-cell immunodeficiencies helps to understand the molecular basis of each single defect and has an important impact on therapeutic strategies: stem cell transplantation will be supported by gene replacement therapy.

In this review the clinical characteristics of the main T-cellular and combined T- and B-cell deficiencies as well as the current diagnostic and therapeutic approaches are described.

 
  • Literatur

  • 1 Aiuti A, Cassani B, Andolfi G. et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117 (08) 2233-2240.
  • 2 Aleman K, Noordzij JG, de Groot R. et al. Omenn syndrome. Eur J Pediatr 2001; 160: 718-725.
  • 3 Amrolia P, Gaspar HB, Hassan A. et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood 2000; 96: 1239-1246.
  • 4 Antoine C. et al. European group for Blood and Marrow transplantation. Long term survival and hematopoetic stem cell transplantation for immunodeficiencies. A survey of European experiences 1968–1999. Lancet 2003; 361: 553-560.
  • 5 Barbosa MD, Nguyen QA, Tchernev VT. et al. Identification of the homologous beige and Chediak- Higashi syndrome genes. Nature 1996; 382: 262-265.
  • 6 Benkerrou M, Le Deist F, de Villartay JP. et al. Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. Eur J Immunol 1997; 27: 2043-2047.
  • 7 Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 2004; 22: 625-655.
  • 8 Chapel H, Geha R, Rosen F. IUIS PID, (Primary Immunodeficiencies) Classification committee. Primary immunodeficiency diseases: an update. Clin Exp Immunol 2003; 132 (01) 9-15.
  • 9 Chun HJ, Zheng L, Ahmad M. et al. Pleiotropic defects in lymphocyte activation caused by caspase- 8 mutations lead to human immunodeficiency. Nature 1997; 419: 395-399.
  • 10 Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Eng J Med 2003; 349 (19) 1821-1828.
  • 11 Dianzani U, Bragardo M, DiFranco D. et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/ lymphoproliferation. Blood 1997; 89 (08) 2871-2879.
  • 12 Dupuis-Girod S, Medioni J, Haddad E. et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 2003; 111: 622-627.
  • 13 Feldmann J, Callebaut I, Raboso G. et al. Munc13–4 is essential for cytolytic granule fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003; 115: 461-473.
  • 14 Filipovich AH, Stone JV, Tomany SC. et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001; 97: 1598-1603.
  • 15 Gennery AR, Barge D, O’Sullivan JJ. et al. Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Arch Dis Child 2002; 86: 422-425.
  • 16 Giliani S, Mori L, de Saint Basile G. et al. Interleukin- 7 receptor alpha (IL-7Ralpha) deficiency: cellular and molecular bases. Analysis of clinical, immunological, and molecular features in 16 novel patients. Immunol Rev 2005; 203: 110-126.
  • 17 Haas JP, Grunke M, Frank C. et al. Increased spontaneous in vitro apoptosis in double negative T cells of humans with a fas/apo-1 mutation. Cell Death Differ 1997; 5: 751-757.
  • 18 Habermehl P, Zepp F. Störungen der zellulären Immunfunktion. In: Wahn U, Seger R, Wahn V, Holländer GA. (Hrsg). Pädiatrische Allergologie und Immunologie. München: Urban und Fischer; 2005: 569-607.
  • 19 Henter JI, Samuelsson-Horne A, Arico M. et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 2002; 100: 2367-2373.
  • 20 Kolluri R, Tolias KF, Carpenter CL. et al. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci 1996; 93: 5615-5618.
  • 21 Levy-Mozziconacci A, Wernert F, Scambler P. Clinical and molecular study of DiGeorge sequence. Eur J Pediatr 1994; 153: 813-820.
  • 22 Litzman J, Jones A, Hann I. et al. Intravenous immunoglobulin, splenectomy, and antibiotic prophylaxis in Wiskott-Aldrich syndrome. Arch Dis Child 1996; 75: 436-439.
  • 23 Macchi P, Villa A, Giliani S. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377 6544 65-68.
  • 24 Mannhardt-Laakmann W, Habermehl P. et al. Impfungen bei Immundefizienz. Kinderärztliche Praxis 2004; 4: 214-229.
  • 25 Markert ML. Purine nucleoside phosphorylase deficiency. Immunodefic Rev 1991; 3: 45-81.
  • 26 Markert ML, Sarzotti M, Ozaki DA. et al. Thymus transplantation in complete DiGeorge syndrome: immunologic and safety evaluations in 12 patients. Blood 2003; 102: 1121-1130.
  • 27 Martin DA, Zheng L, Siegel RM. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci USA 1999; 96: 4552-4557.
  • 28 Menasche G, Pastural E, Feldmann J. et al. Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome. Nat Genet 2000; 25: 173-176.
  • 29 Minegishi Y, Saito M, Tsuchiya S. et al. Dominantnegative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007; 448: 1058-1062.
  • 30 Minegishi Y, Karasuyama H. Hyperimmunoglobulin E syndrome and tyrosine kinase 2 deficiency. Curr Opin Allergy Clin Immunol 2007; 6: 506-509.
  • 31 Mueller SM, Ege M, Pottharst A. et al. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 2001; 98: 1847-1851.
  • 32 Niehues T, Weiß M, Wahn V. www.immundefekt.de/klass/2005.shtml.
  • 33 Noguchi M, Yi H, Rosenblatt HM. et al. Interleukin- 2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993; 73 (01) 147-157.
  • 34 Notarangelo L, Casanova JL, Fischer A. et al. International Union of Immunological Societies Primary Immunodeficiency diseases classification committee. Primary immunodeficiency diseases: an update. J Allergy Clin Immunol 2004; 114 (03) 677-687.
  • 35 O’Driscoll M, Gennery AR, Seidel J. et al. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair 2004; 3: 1227-1235.
  • 36 Perez EF, Bokszczanin A, McDonald-McGinn D. et al. Safety of live viral vaccine in patients with chromosome 22q11.2 deletion dyndrome. Pediatrics 2003; 112: 325.
  • 37 Pignata C. A lesson for unraveling complex aspects of novel immunodeficiencies from the human equivalent of the nude/SCID phenotype. J Hematother Stem Cell Res 2002; 11 (02) 409-414.
  • 38 Puck JM, Straus SE, LeDeist F. et al. Inherited disorders with autoimmunity and defective lymphocyte regulation. In: Ochs HD, Smith CIE, Puck J. (Hrsg). Primary immunodeficiency diseases, a molecular and genetic approach. Oxford University Press; 2000: 339-352.
  • 39 Renner E, Belohradsky B, Grimbacher B. Hyper- IgE-Syndrome. Allergologie 2004; 27: 408-414.
  • 40 Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ 2003; 10: 124-133.
  • 41 Ryan AK, Goodship JK, Wilson DI. et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions. a European collaborative study. J Med Genet 1997; 34: 798-804.
  • 42 Ryser O, Morell A, Hitzig W. Primary immunodeficiencies in Switzerland: First report of the national registry in adults and children. J Clin Immunol 1988; 8: 479-485.
  • 43 Savitzky K, Sfez S, Tagle DA. et al. The complete sequence of the coding region of the ATM gen reveals similarity to cell cycle regulators in different species. Hum Mol Genet 1995; 4: 2025-2032.
  • 44 Schneider EM, Lorenz I, Muller-Rosenberger M. et al. Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer cell apoptosis. Blood 2002; 100: 2891-2898.
  • 45 Stepp SE, Dufourcq-Lagelouse R, LeDeist F. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999; 286: 1957-1959.
  • 46 Straus SE, Jaffe ES, Puck JM. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 2001; 98: 194-200.
  • 47 Swift M. Genetic aspects of ataxia teleangiectasia. Immunodef Reviews 1990; 2 (01) 67-81.
  • 48 Wang J, Zheng L, Lobito A. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98: 47-58.
  • 49 Weemaes CMR, Hustinex TWJ, Scheres JMJC. et al. New chromosome instability disorder: The Nijmegen breakage syndrome. Acta Paediatr Scan 1981; 70: 557-562.