Vet Comp Orthop Traumatol 1996; 09(03): 119-25
DOI: 10.1055/s-0038-1632516
Original Research
Schattauer GmbH

Foreign Body Granulomatous Response to Particulate Bony Debris

J. H. Boss
1   From the Department of Pathology, Bnai-Zion Medical Center
,
Z. Ish-Shalom
2   Department of Endocrinology, Rambam Medical Center
,
I. Misselevich
1   From the Department of Pathology, Bnai-Zion Medical Center
,
D. G. Mendes
3   Center for Implant Surgery and the Association of Patients with Implanted Joints, the Bruce Rapapport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
› Author Affiliations
Further Information

Publication History

Received for publication 12 July 1995

Publication Date:
23 February 2018 (online)

Summary

Archival material was retrieved in order to histologically assess the body’s response to micron-sized, necrotic bony particles. Specimens were obtained from (1) human bone grafts in a subcutaneous or muscular pouch of athymic nude mice, (2) a massive bone allograft replacing a patient’s humerus, (3) rabbits’ healing tibial cortical bone defects littered with finely dispersed bony particles, (4) periprosthetic tissues of patient’s aseptically loosened artificial joints and (5) interfacial membranes of intramedullary nails used for fixation of patients’ fractured long bones. Necrotic bony debris was found to induce a giant celled granulomatous reaction. In sections of undecalcified samples stained by the von Kossa method, small calcific particles were observed to be present within polykaryonic macrophages (foreign body giant cells) and surrounded by mononuclear macrophages. It is concluded that a foreign body-type giant celled granulation tissue participates in the degradation of micron-sized, necrotic bony detritus, whether the disintegrating bone is of the xeno-, alio- or autogenic provenance.

Histological examination of von Kossa-stained sections, of undecalcified specimens, revealed a giant celled granulomatous response to bony debris. Irrespective of whether or not the disintegrating bone was of auto-, alio- or xenogeneic provenance, micron-sized bony particles were found to be phagocytosed by polykaryonic macrophages of the granulation tissue.

 
  • REFERENCES

  • 1 Alwan WH, Dieppe PA, Elson CJ, Bradfield JWB. Hydroxyapatite and urate crystal induced cytokine release by macrophages. Ann Rheum Dis 1989; 48: 476-82.
  • 2 Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992; 276: 7-18.
  • 3 Arkin CF, Millard M, Medeiros J. Giant invasive cholesteatoma. Report of a case with cerebellar invasion. Arch Pathol Lab Med 1985; 109: 960-1.
  • 4 Basle MF, Rebel A, Grizon F. et al Cellular response to calcium phosphate ceramics implanted in rabbit bone. J Mater Sci: Mater Med 1993; 4: 273-80.
  • 5 Bloebaum RD, Dupont JA. Osteolysis from a press-fit hydoxyapatite-coated implant. J Arthroplasty 1993; 8: 195-202.
  • 6 Bloebaum RD, Beeks D, Dorr LD. et al Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin Orthop 1994; 298: 19-26.
  • 7 Boss JH, Shajrawi I, Allperson M, Mendes DG. Inhibition of osteogenesis by foreign body granulomatous response to bony debris. Histological and histo-morphometrical comparison of gap callus in experimentally produced cortical defects with or without bony detritus. Orthopaedics Intern Edn 1994; 2: 447-53.
  • 8 Boss JH, Shajrawi I, Mendes DG. The nature of bone-implant interface: The lessons learned from implant retrieval and analysis in man and experimental animal. Medical Progress Through Technology 1994; 20: 119-42.
  • 9 Burchardt H. The biology of bone graft repair. Clin Orthop 1983; 174: 28-42.
  • 10 Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop 1985; 183: 246-63.
  • 11 Caplan Al. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-50.
  • 12 Carlsson L, Regner L, Johansson C. et al Bone response to hydroxyapatite-coated and commercially pure titanium implants in the human arthritic knee. J Orthop Res 1994; 12: 274-85.
  • 13 Chappard D, Richard S, Audeval-Gerard C. et al Animal biocompatibility of a highly purified bone xenograft: A preliminary study (English translation). Innov Tech Biol Med 1991; 12: 685-93.
  • 14 Cheal EJ, Mansmann KA, DiGiooa AM. et al Role of interfragmentary strain in fracture healing: Ovine model of a healing osteotomy. J Orthop Res 1991; 9: 908-17.
  • 15 Cornell CN, Lane JM. Newest factors in fracture healing. Clin Orthop 1992; 277: 297-311.
  • 16 Damien CJ, Parsons JR. Bone graft and bone graft substitutes: A review of current technology and applications. J Appl Biomater 1991; 2: 187-208.
  • 17 Delloye C, Verhelpen M, d’Hemricourtm J. et al Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop 1992; 282: 273-93.
  • 18 Dickson GR. Methods of Calcified Tissue Preparation. Amsterdam: Elsevier; 1984
  • 19 Dorr LD, Bloebaum R, Emmanuel J, Meldrum J. Histological, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop 1990; 261: 82-95.
  • 20 Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg 1991; 73 A 1123-42.
  • 21 Filiaggi MJ, Pilliar RM, Coombs NA. Postplasma- spraying heat treatment of the HA coating/Ti-6AI-4V implant system. J Biomed Mater Res 1993; 27: 191-8.
  • 22 Fisher LW, Termine JD. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop 1985; 200: 362-85.
  • 23 Gillespie WJ, Allardyce RA. Mechanisms of bone degradation in infection: A review of current hypotheses. Orthopedics 1990; 13: 407-10.
  • 24 Goldring SR, Jasty M, Roelke MS. et al Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthr Rheum 1986; 29: 836-42.
  • 25 Goodman SB. Polymer particles potentiate loosening of joint arthroplasties. Orthopaedics Intern Edn 1993; 1: 316-21.
  • 26 Goshima J, Goldberg VM, Caplan Al. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop 1991; 269: 274-83.
  • 27 Gurley AM, Roth SI. Bone. In: Histology for Pathologists. Sternberg SS. (ed) New York: Raven Press; 1992: 61-79.
  • 28 Hagen JW, Semmelink JM, Klein CPAT. et al Bone induction by demineralized bone particles: Long-term observations of the implant- connective tissue interface. J Biomed Mater Res 1992; 26: 897-913.
  • 29 Harakas NK. Demineralized bone-matrixinduced osteogenesis. Clin Orthop 1984; 188: 239-51.
  • 30 Holtrop ME, Cox KA, Glowacki J. Cells of the mononuclear phagocytic system resorb implanted bone matrix: A histologic and ultrastructural study. Calcif Tissue Intern 1982; 34: 488-94.
  • 31 Horisaka Y, Okamoto Y, Matsumoto N. et al Subperiosteal implantation of bone morphogenetic protein adsorbed to hydroxyapatite. Clin Orthop 1991; 268: 303-12.
  • 32 Howard GA, Bottemiller BL, Turner RT. et al Parathyroid hormone stimulates bone formation and resorption in organ cultures: Evidence for a coupling mechanism. Proc Natl Acad Sci 1981; 78: 3204-17.
  • 33 Hulth A. Current concepts of fracture healing. Clin Orthop 1989; 249: 265-84.
  • 34 Hulth A, Johnell O, Henrickson A. The implantation of demineralized fracture matrix yields more new bone formation than does intact matrix. Clin Orthop 1988; 234: 235-7.
  • 35 Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA, de Groot K. Calcium phosphate plasma-sprayed coatings and their stability: An in vivo study. J Biomed Mater Res 1994; 28: 909-17.
  • 36 Lennox DW, Schofield BH, McDonald DF, Riley Jr LH. A histologic comparison of aseptic loosening of cemented, press-fit, and biologic ingrowth prostheses. Clin Orthop 1987; 225: 171-91.
  • 37 Mankin HJ, Springfield DS, Gebhardt MC, Tomford WW. Current status of allografting for bone tumors. Orthopedics 1992; 15-1147.
  • 38 Markel MD, Wikenjeiser MA, Chao EYS. Formation of bone in tibial defects in a canine model. J Bone Joint Surg 1991; 73 A 914-23.
  • 39 Marks Jr SC. Congenital osteopetrotic mutations as probes of the origin, structure, and function of osteoclasts. Clin Orthop 1984; 189: 239-63.
  • 40 Minkin C, Posek CD, Newbrey J. Mononuclear phagocytes and bone resorption. Metab Bone Dis Rel Res 1981; 2: 363-9.
  • 41 Mizuno K, Mineo K, Tachibana T. et al The osteogenic potential of fracture hematoma. Subperiosteal and intramuscular transplantation of the hematoma. J Bone Joint Surg 1990; 72 B 822-9.
  • 42 Mundy GR, Altman AJ, Gondek A, Bandelin JG. Direct resorption of bone by human monocytes. Science 1987; 196: 1109-11.
  • 43 Nathan RM, Bentz H, Armstrong RM. et al Osteogenesis in rats with an inductive bovine composite. J Orthop Res 1988; 6: 324-34.
  • 44 Pazzaglia U, Byers PD. Fractured femoral shaft through an osteolytic lesion resulting from the reaction to a prosthesis. A case report. J Bone Joint Surg 1984; 66B: 337-9.
  • 45 Pelker RR, McKay Jr J, Troiano N. et al Allograft incorporation: A biomechanical evaluation in a rat model. J Orthop Res 1989; 7: 585-9.
  • 46 Quinn J, Joyner C, Triffitt JT, Athanasou NA. Polymethylmethacrylate-induced inflammatory macrophages resorb bone. J Bone Joint Surg 1992; 74 B 652-8.
  • 47 Sakata H, Takagi K. Effect of bone marrow mononuclear phagocytes on the bone matrix- induced bone formation in rats. Clin Orthop 1987; 220: 253-8.
  • 48 Schenk RK, Olah AJ, Hermann W. Preparation of calcified tissues for light microscopy. In: Methods of Calcified Tissue Preparation. Dickson GR. (ed) Amsterdam: Elsevier; 1984: 184-214.
  • 49 Shanbhag AS, Jacobs JJ, Giant TT. et al Composition and morphology of wear debris in failed uncemented total hip replacement. J Bone Joint Surg 1994; 76 A 60-7.
  • 50 Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junction in the repair process. J Bone Joint Surg 1988; 70 A 1067-81.
  • 51 Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg 1992; 74 A 939-50.
  • 52 Toriumi DM, Larabee WF, Walike JW. et al Demineralized bone, implant resorption with long-term follow up. Arch Otolaryngol. Head Neck Surg 1990; 116: 676-80.
  • 53 Uretzky G, Appelbaum J, Sela J. Inhibition of the inductive activity of demineralized bone matrix by different percutaneous implants. Biomaterials 1988; 9: 195-7.