Vet Comp Orthop Traumatol 1998; 11(03): 118-124
DOI: 10.1055/s-0038-1632532
Original Research
Schattauer GmbH

Microangiographic Pattern of Bone Healing in Canine Tibial Osteotomies Treated with Type II External Fixators

J. Franch
1   From the Departament de Cirurgia, Facultat de Veterinària, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
,
F. García
1   From the Departament de Cirurgia, Facultat de Veterinària, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
,
J. De la Fuente
1   From the Departament de Cirurgia, Facultat de Veterinària, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
,
T. Peña
1   From the Departament de Cirurgia, Facultat de Veterinària, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
,
D. Prandi
1   From the Departament de Cirurgia, Facultat de Veterinària, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
,
J. Camón
2   Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid
,
F. San Román
3   Departamento de Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid
,
M. C. Manzanares
4   Unitat d’Anatomia, Universitat de Barcelona, Hospitalet, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Received:24 July 1997

Accepted:08 October 1997

Publication Date:
10 February 2018 (online)

Summary

The morphological aspects of the vascular response, which develops in the fracture-healing process of osteotomies treated with external fixators, were evaluated by means of microangiography. Bilateral transverse midshaft osteotomies were performed in the tibiae of 16 dogs. The osteotomies were reduced by means of a Type II external skeletal fixator, and the clinical and radiographic courses were assessed weekly until the moment of euthanasia. Four dogs each were euthanatized at one, two, four and eight weeks postoperatively. After heparinization and euthanasia both femoral arteries were perfused with micronized barium sulphate, and microangiograms were performed in decalcified mid-tibial sagittal slices. Initial intramedullary revascularization as well as gap supply were already observed in some one-week microangiograms, and they were well developed in all of the two-week microangiograms. A network of parallel extraosseous blood vessels, orientated perpendicularly to the cortical surface, first appeared in the two-week microangiograms. Four weeks after the osteotomy, the extraosseous network showed its greatest degree of development whereas in the eight-week microangiograms most of the osteotomies showed only some traces of the abovementioned vascular reaction. It can be concluded that the microangiographic pattern developed in external fixated osteotomies shows many similarities with those described in experimental fractures, reduced by other means, with the earlier development of all of the vascular phenomena being the most important difference.

Microangiography was used to determine the morphological characteristics of the vascular response developed in the tibial experimental fractures healing process.

 
  • REFERENCES

  • 1 Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop 1994; 301: 124-31.
  • 2 Blass CE, VanEe RT, Wilson JW. Microvascular and histological effects on cortical bone of applied double-loop cerclage. J Am Anim Hosp Assoc 1991; 27 (04) 432-4.
  • 3 Brueton RN, Brookes M, Heatley FW. The vascular repair of an experimental osteotomy held in an external fixator. Clin Orthop 1990; 257: 286-304.
  • 4 Court-Brown CM. The effect of external skeletal fixation on bone healing and bone blood supply. An experimental study. Clin Orthop 1985; 201: 278-89.
  • 5 Gothman L. Arterial changes in experimental fractures of the monkey's tibia treated with intramedullary nailing. A microangiographic study. Acta Chir Scand 1961; 121: 56-66.
  • 6 Holden CEA. The role of blood supply to soft tissue in the healing of diaphyseal fractures. An experimental study. J Bone Joint Surg 1972; 54 A (05) 993-1000.
  • 7 Kirby BM, Wilson JW. Effect of circumferential bands on cortical vascularity and viability. J Orthop Res 1991; 9 (02) 174-9.
  • 8 Kregor PJ, Senft D, Parvin D, Campbell C, Toomey S, Parker C, Gillespy T, Swiontkowski MF. Cortical bone perfusion in plated fractured sheep tibiae. J Orthop Res 1995; 13 (05) 715-24. Abs.
  • 9 Macnab I, De Haas WG. The role of periosteal blood supply in the healing of fractures of the tibia. Clin Orthop 1974; (105) 27-33.
  • 10 Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H. The vascular supply to bone in distraction osteoneogenesis: An experimental study. J Bone Joint Surg 1996; 78 B (04) 497-8.
  • 11 Olerud S and Danckwardt-Lilliestrom G. Fracture healing in compression osteosynthesis in the dog. J Bone Joint Surg 1968; 50 B (04) 844-51.
  • 12 Olerud S and Danckwardt-Lilliestrom G. Fracture healing in compression osteosynthesis. An experimental study in dogs with an avascular, diaphyseal, intermediate fragment. Acta Orthopaedica Scandinavica 1971; (Suppl. 137) Suppl 8-15.
  • 13 Paradis GR, Kelly PJ. Blood flow and mineral deposition in canine tibial fractures. J Bone Joint Surg 1975; 57 A (02) 220-7.
  • 14 Rhinelander FW and Baragry RA. Microangiography in bone healing. I. Undisplaced closed fractures. J Bone Joint Surg 1962; 44 A 1273-98.
  • 15 Rhinelander FW. Circulation in bone In The Biochemistry and Physiology of Bone, 2nd ed vol 2.. Bourne GH. (ed). Academic Press Inc.; New York: 1972: 1-77.
  • 16 Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop 1974; 105: 34-81.
  • 17 Rhinelander FW, Stewart CL, Wilson JW. Bone Vascular Supply. In Skeletal Research: An Experimental Approach.; Simmons DL, Kunin AS. (eds) Academic Press Inc.; New York: 1979: 367-95.
  • 18 Rhinelander FW, and Wilson JW. Blood Supply to Developing, Mature and Healing Bone. In Bone in Clinical Orthopaedics. A Study in Comparative Osteology.; Summer- Smith G. (ed) WB Saunders Co.; Philadelphia.: 1982: 81-158.
  • 19 Roush JK, and Wilson JW. Healing of mandibular body osteotomies after plate and intramedullary pin fixation. Vet Surg 1989; 18 (03) 190-6.
  • 20 Roush JK, Wilson JW. Effects of Plate Luting on Cortical Vascularity and Development of Cortical Porosity in Canine Femurs. Vet Surg 1990; 19 (03) 208-14.
  • 21 Schemitsch EH, Kowalski MJ, Swiontkowski MF, Senft D. Cortical bone blood flow in reamed and unreamed locked intramedullary nailing: A fractured tibia model in sheep. J Orthop Trauma 1994; 8 (05) 373-82.
  • 22 Smith SR. Bronk JT, Kelly PJ. Effect of fracture fixation on cortical bone blood flow. J Orthop Res 1990; 8: 471-8.
  • 23 Trueta J. The role of the vessels in osteogenesis. J Bone Joint Surg 1963; 45 B (02) 402-10.
  • 24 Wallace AL, Draper ER, Strachan RK, McCarthy ID, Hughes SP. The effect of devascularization upon early bone healing in dynamic external fixation. J Bone Joint Surg 1991; 73 (05) B 819-25.
  • 25 West PG, Rowland GR, Budsberg SC, Aron DN. Histomorphometric and angiographic analysis of bone healing in the humerus of pigeons. Am J Vet Res 1996; 57 (07) 1010-5.