Vet Comp Orthop Traumatol 1998; 11(01): 01-07
DOI: 10.1055/s-0038-1632601
Original Research
Schattauer GmbH

Development of a Segmental Long-bone Defect Model in Sheep

D. H. Mathon
1   From the Laboratoire de Chirurgie Expérimentale du Tissu Osseux Ecole Nationale Vétérinaire, Toulouse
,
P. Frayssinet
2   Bioland. Toulouse, France
,
E. Asimus
1   From the Laboratoire de Chirurgie Expérimentale du Tissu Osseux Ecole Nationale Vétérinaire, Toulouse
,
G. Chanoit
1   From the Laboratoire de Chirurgie Expérimentale du Tissu Osseux Ecole Nationale Vétérinaire, Toulouse
,
P. Collard
1   From the Laboratoire de Chirurgie Expérimentale du Tissu Osseux Ecole Nationale Vétérinaire, Toulouse
,
A. Autefage
1   From the Laboratoire de Chirurgie Expérimentale du Tissu Osseux Ecole Nationale Vétérinaire, Toulouse
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 29. April 1997

Accepted 30. Juli 1997

Publikationsdatum:
09. Februar 2018 (online)

Summary

A 10 mm-long (Group #1) or 20 mmlong (Group #2) segmental osteoperiosteal defect was performed on the metatarsus of ten adult ewes (5+5). The goal of the study was to search for a critical size defect model leading to nonunion. The bone gap was maintained for three months with an internal fixation device involving two plates set in orthogonal planes. Radiological and histological examinations were performed on harvested metatarsal bones. Three months after surgery Group #1 animals showed obvious signs of bone healing without achieving complete union in all cases. Evidence of a healing process was not observed in Group #2 animals, and histological examination confirmed the complete failure of bone repair in the 20 mm gaps. These results are comparable to those of other authors who have concluded that a bone gap corresponding to 1.4 times the diaphyseal diameter overshoots physiological bone healing capacities. This long bone defect model showed good biological properties allowing callus settlement with minimal impairment in Group #1 and permitted weightbearing and unrestricted motion in the animals. Such a sheep model would be useful for testing hard tissue biomaterials, bone healing enhancement or further developed as an experimental nonunion model.

Metatarsal diaphyseal defects (length: 10 or 20 mm) maintained with plates were performed in sheep in search of nonunion after a three-month period. Radiological and histological examinations showed that 10 mm gaps healed spontaneously while 20 mm gaps did not. These results are comparable to those of other authors who concluded that a diaphyseal defect whose length exceeds 1.4 times its diameter is unable to repair. The good biological properties exhibited by this defect model seem to be convenient for testing bone substitutes or bone healing enhancement techniques.

 
  • REFERENCES

  • 1 Abbott R, Laurent JP, Judge D, Cheek WR. Survival of split calvarial bone grafts in a dog model. Child’s Nerv Syst 1994; 10: 249-51.
  • 2 Aro HT, Aho AJ. Clinical use of bone allografts. Annals of Medecine 1993; 2: 403-12.
  • 3 Barlet JP, Coxam V, Davicco MJ, Gaumet N. Modeles animaux d’osteoporose postmenopausique. Reprod Nutr Dev 1994; 3: 221-36.
  • 4 Bolander ME, Balia G.. The use of demineralized bone matrix in the repair of segmental defects. J Bone and Joint Surg [Am.] 1986; 68: 1264-74.
  • 5 Brinker WO, Piermattei DL, Flo GL. Handbook of small animal orthopedics and fracture treatment. Philadelphia: W. B. Saunders Company 1983; 2-38.
  • 6 Canady JW, Zeitler DP, Thompson SA, Nicholas CD. Suitability of the iliac crest as a site for harvest of autogenous bone grafts. Cleft Palate-Craniofacial J 1993; 30: 579-81.
  • 7 Chavassieux P, Pastoureau P, Boivin G. et al Dose effect on ewe bone remodeling of short-term sodium fluoride administration. An histomorphometric and biological study. Bone 1991; 12: 421-7.
  • 8 Clohisy D, Mankin H. Osteoarticular allografts for reconstruction after resection of a musculoskeletal tumor in the proximal end of the tibia. J Bone Joint Surg [Am] 1994; 76: 549-54.
  • 9 Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC.. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 1994; 301: 302-12.
  • 10 Damien CJ, Parsons JR. Bone Graft and Bone Graft Substitutes. A review of current technology and applications. Journal of applied Biomaterials 1991; 2: 187-208.
  • 11 Einhorn TA, Lane JM, Burstein AH, Kopman CR, Vigorita VJ. The healing of segmental bone defects induced by demineralized bone matrix. J Bone and Joint Surg[Am] 1984; 66 (02) 274-9.
  • 12 Frayssinet P, Autefage A.. Hybrid materials for use as bone substitutes. Preliminary results and prospects for the future Rev Rhum (Engl. Ed.) 1993; 60 (05) 302-10.
  • 13 Frayssinet P, Trouillet JL, Rouquet N, Asimus E, Autefage A. Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials 1993; 14 (06) 423-9.
  • 14 Gerhart TN, Kirker-Head CA, Kriz Met al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993; 293: 317-26.
  • 15 Green SA. Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop 1994; 301: 111-7.
  • 16 Honnas CM. Surgical treatment of selected musculoskeletal disorders of the forelimb In Equine Surgery. Auer J (ed). Philadelphia: W B Saunders Company 1992; 985-1054.
  • 17 Janovec M, Dvorak K. Autolyzed antigenextracted allogeneic bone for bridging segmental diaphyseal bone defects in rabbits. Clin Orthop 1988; 229: 249-56.
  • 18 Kaymakci B, Wark JD. Precise accurate mineral measurements of excised sheep bones using X-ray densitometry. Bone and Mineral 1994; 25: 231-46.
  • 19 Kenley RA, Yim K, Abrams J. et al Biotechnology and bone graft substitutes. Pharmaceutical Research 1993; 10 (10) 1393 401.
  • 20 Key JA.. The effect of a local calcium depot on osteogenesis and healing of fractures J Bone Joint Surg [Am]. 1934; (16) 176-84.
  • 21 Kitsugi T, Yamamuro T, Kokubo T. Bonding behavior of a glass-ceramic containing apatite and wollastonite in segmental replacement of the rabbit tibia under loadbearing conditions. J Bone Joint Surg [Am] 1989; 71 (02) 264-72.
  • 22 Laftman P, Holmstrom T, Kairento AL. et al No effect of growth hormone on recovery of load-protected bone. Cortical bone mass and strength studied in rabbits. Acta Orthop Scand 1988; 59: 24-8.
  • 23 Lesser AS. Segmental bone transport for the treatment of bone deficits. JAAHA 1994; 30: 322-30.
  • 24 Marsh JL, Prokuski MD, Biermann S. Chronic infected tibial nonunions with bone loss. Conventional techniques versus bone transport. Clin Orthop 1994; 301: 139-46.
  • 25 Michaud RJ, Krabu KJ. Bone allograft banking in the United Kingdom. J Bone Joint Surg [Br] 1994; 76: 350-1.
  • 26 Nordin BEC. Guidelines for bone densitometry. The Medical J of Australia 1994; 160: 517-20.
  • 27 Orsini JA, Nunamaker DN. Management of a severely comminuted fracture of the third metacarpal bone in a horse. JAVMA 1988; 193 (06) 683-6.
  • 28 Prieur WD, Sumner-Smith G. Fracture-healing processes. In Manual of internal fixation in small animals.. Brinker WO, Hohn RB, and Prieur WD. (eds). Berlin: Springer-Verlag; 1984: 8-11.
  • 29 Radder AM, Leender H, Van Blitterwijk CA. Interface reactions to PEO/PBT copolymers (Polyactive®), after implantation in cortical bone. J Biomed Mater Res 1994; 28: 141-51.
  • 30 Rahn BA. Bone healing: histologic and physiologic concepts. In Bone in clinical orthopædics.. Sumner-Smith G. (ed). Philadelphia: W. B.: Saunders Company; 1982: 81 158.
  • 31 Rhinelander FW, Wilson JW. Blood supply to developing, mature and healing bone. In Bone in clinical orthopædics.. Sumner-Smith G. (ed). Philadelphia: W.B.: Saunders Company; 1982: 81-158.
  • 32 Roach HI, Shearer JR, Archer C. The Choice of an experimental model. J Bone Joint Surg [Br] 1989; 71: 549-53.
  • 33 Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D. Coralline Hydroxyapatite Bone Graft Substitute in a canine diaphyseal defect model: radiographichistometric correlation. Invest Radiol 1986; 21 (11) 851-7.
  • 34 Summers BN, Eisenstein SM.. Donor site pain from the ilium: A complication of lumbar spine fusion J Bone Joint Surg[Br]. 1989; 71: 677-84.
  • 35 Toombs JP, Wallace LJ. Evaluation of autogeneic and allogeneic cortical chip grafting in a feline tibial nonunion model. Am J Vet Res 1985; 46 2: 519-28.
  • 36 Toombs JP, Wallace LJ, Bjorling DE, Rowland GN. Evaluation of Key’s hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res 1985; 46 2: 513-8.
  • 37 Tukianen E, Asko-Seljavaara S. Use of the Ilizarov Technique after a free microvascular muscle flap transplantation in massive trauma of the lower leg. Clin Orthop 1993; 297: 129-34.
  • 38 Wagner SD. Failure of Ethylene oxydesterilized cortical allografts in two dogs. JAAHA 1994; 30 2: 181-9.
  • 39 Yang C, Simmons DJ, Lozano R. The healing of grafts combining freeze-dried and demineralized allogeneic bone in rabbits. Clin Orthop 1994; 298: 286-95.
  • 40 Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3: 192-5.