Vet Comp Orthop Traumatol 1998; 11(02): 105-111
DOI: 10.1055/s-0038-1632619
Original Research
Schattauer GmbH

Backscattered Electron Imaging of the Calcified Tissues Present in Bone Healing

J. Franch
1   From the Department de Cirurgia, Facultat de Veterinaria, Universitat Autónoma de Barcelona, Bellaterra (Barcelona), Spain
,
F. García
1   From the Department de Cirurgia, Facultat de Veterinaria, Universitat Autónoma de Barcelona, Bellaterra (Barcelona), Spain
,
J. Camón
2   Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
,
M. C. Manzanares
3   Unitat d’Anatomia, Universitat de Barcelona, Hospitalet (Barcelona), Spain
› Author Affiliations
Further Information

Publication History

Received 04 June 1997

Accepted 21 August 1997

Publication Date:
10 February 2018 (online)

Summary

The aspect of calcified tissues involved in fracture healing was studied by means of backscattered electron imaging. Bilateral transverse midshaft osteotomies were performed in the tibiae of 16 dogs. The osteotomies were reduced by means of a type II external skeletal fixator, and the clinical and radiographic course was assessed weekly until the moment of euthanasia, one, two, four and eight weeks after the operations. The osteotomized areas were removed and their structure examined in the scanning electron microscope, using backscattered electron images, to determine the general aspect of the extracellular matrix of the calcified tissues present. Four different tissues were observed: lamellar bone, woven bone, calcified cartilage and chondroid tissue. The backscattered electron contrast and fibre arrangement of the matrix, as well as the size and shape of the cellular lacunae, allow identification of the tissue. Chondroid tissue, which seems to have a leading role in the early phases of fracture healing, shows a characteristic pattern of a highly calcified and fibrous matrix with a large number of irregular and confluent cell lacunae.

The morphological characteristics of the calcified tissues involved in fracture healing were studied by means of backscattered electron imaging. Lamellar bone, woven bone, calcified cartilage and chondroid tissue were the four calcified tissues observed during the healing process of canine midshaft tibial experimental fractures.

 
  • REFERENCES

  • 1 Beresford WA.. Chondroid bone, Secondary Cartilage and Metaplasia. Baltimore; Urban & Schwarzenberg; 1981
  • 2 Bernard GW, Pease DC. An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 1969; 125: 271-90.
  • 3 Bloebaum RD, Rhodes DM, Rubman MH, Hofmann AA.. Bilateral tibial components of different cementless designs and materials. Microradiographic, backscattered imaging, and histologic analysis. Clin Orthop 1991; 268: 179-87.
  • 4 Bonucci E. Comments of the ultrastructural morphology of the calcification process: an attempt to reconcile matrix vesicles, collagen fibrils, and crystal ghosts. Bone and Mineral 1992; 17: 219-22.
  • 5 Boyde A, Jones SJ. Scanning electron microscopy of bone: instrument, specimen, and issues. Microsc Res Tech 1996; 33 2: 92-120.
  • 6 Burr DB, Schaffler MB, Yang KH, Lukoschek M, Sivaneri N, Blaha JD, Radin EL. Skeletal change in response to altered strain environments: is woven bone a response to elevated strain?. Bone 1989; 10: 223-33.
  • 7 Dhem A. Le forage des canaux de Havers. Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur 1965; 51 (07) 583-93.
  • 8 Dhem A, Goret-Nicaise M, Dambrain R, Nyseen-Behets C, Lengele B, Manzanares MC. Skeletal growth and chondroid tissue. Arch Ital Anat Embriol 1989; 94 (03) 237-41.
  • 9 Donath K.. Preparation of Histologic sections by the Cutting-Grinding Technique for hard tissue and other material not suitable to be sectioned by routine methods. Equipment and methodical performance. Norderstedt: Exakt-Kulzer-Publication 1988
  • 10 Egger EL, Gottsauner-Wolf F, Palmer J, Aro HT, Chao EYS. Effects of axial dynamization on bone healing. J Trauma 1993; 34 (02) 185-92.
  • 11 Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg 1985; 67 B (04) 650-6.
  • 12 Goret-Nicaise M, Dhem A. Presence of chondroid tissue in the symphyseal region of the growing human mandible. Acta Anat 1982; 113: 189-95.
  • 13 Goret-Nicaise M. Identification of collagen type I and type II in chondroid tissue. Calcif Tissue Int 1984; 36: 682-9.
  • 14 Goret-Nicaise M, Dhem A. Comparison of calcium content of different tissues present in the human mandible. Acta Anat 1985; 124: 167-72.
  • 15 Goret-Nicaise M.. La croissance de la mandibule humaine: conception actuelle.. These. Universite Catholique de Louvain 1986
  • 16 Goret-Nicaise M, Dhem A. Electron microscopy study of chondroid tissue in the cat mandible. Calcif Tissue Int 1987; 40: 219-23.
  • 17 Goret-Nicaise M, Manzanares MC, Bulpa P, Nolmans E, Dhem A. Calcified tissues involved in the ontogenesis of cranial vault. Anat Embryol 1988; 178: 399-406.
  • 18 Hiltunen A, Aro HT, Vuorio E. Regulation of extracellular matrix genes during fracture healing in mice. Clin Orthop 1993; 297: 23-7.
  • 19 Hutzschenreuter P, Perren SM, Steinemann S. Some effects of rigidity of internal fixation on the healing pattern of osteotomies. Injury 1969; (01) 77-81.
  • 20 Jasty M, Bragdon CR, Schtzer S, Rubash H, Haire T, Harris WH. Bone ingrowth into porous coated canine total hip replacements. Quantification by backscattered scanning electron microscopy and image analysis. Scanning Microsc 1989; 3 (04) 1051-7.
  • 21 Kim W, Caja VL, Larsson SAB, Chao EYS. Advanced histomorphometric technique on the analysis of early fracture repair under external fixation. International Journal of Orthopaedic Trauma 1992; (Suppl. 03) Suppl 5-10.
  • 22 Lengele B, Dhem A, Schowing J. Early development of the primitive cranial vault in the chick embryo. J Craniofac Genet Dev Biol 1990; 10: 103-12.
  • 23 Manzanares MC, Goret-Nicaise M, Dhem A. Differentiation of the mesenchyme in chondroid tissue: A biomechanical hypothesis. Acta Anat 1987; 128: 341-7.
  • 24 Manzanares MC.. Morphological study of the sutural spaces of the skull. Thesis. Catholic University of Louvain 1988
  • 25 McLaughlin Jr RM. The evolution of the understanding of bone healing. Vet Comp Orthop Traumatol 1991; 4: 16-20.
  • 26 McMahon JM, Boyde A, Bromage TG. Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotorinduced strain. Anat Rec 1995; 242 (02) 147-58.
  • 27 Mizoguchi I, Nakamura M, Takahashi I, Sasano Y, Kagayama M, Mitani H. Presence of chondroid bone on rat mandibular condylar cartilage. An immunohistochemical study. Anat Embryol 1993; 187: 9-15.
  • 28 Nyssen-Behets C, Vandersmissen A, Ansay M, Dhem A. Spontaneous fracture in bovine fluorosis: Microradiographic aspects. Ann Radiol 1988; 31 (07) (08) 451-4.
  • 29 Olerud S, Danckwardt-Lilliestrom G. Fracture healing in compression osteosynthesis. An experimental study in dogs with an avascular diaphyseal, intermediate fragment. Acta Orthop Scand 1971; (Suppl. 137) Suppl 1-44.
  • 30 O'Sullivan ME, Bronk JT, Chao EYS, Kelly PJ. Experimental study of the effect of weight bearing on fracture healing in the canine tibia. Clin Orthop 1994; 302: 273-83.
  • 31 Orbay JL, Frankel VH, Finkle JE, Kummer FJ. Canine leg lengthening by the Ilizarov technique. A biomechanical, radiologic, and morphologic study. Clin Orthop 1992; 278: 265-73.
  • 32 Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone Histomorphometry: Standarization of Nomenclature, Symbols, and Units. J Bone Min Res 1987; 2 (06) 595-610.
  • 33 Pilipili C, Nyseen-Behets C, Dhem A. Microradiography and fluorescence microscopy of bone remodeling on the basal crypt of permanent mandibular premolars in dogs during eruption. Connect Tissue Res 1995; 32-33 (01) (03) 171-81.
  • 34 Pritchard JJ, Scott JH, Girgis FG. Structural development of cranial and facial sutures. J Anat 1956; 90: 73-86.
  • 35 Rahn BA. Bone Healing: Histologic and Physiologic Concepts. In Bone in Clinical Orthopaedics.. Sumner-Smith G. (ed). Philadelphia: WB Saunders Co; 1982: 335-86.
  • 36 Rhinelander FW, Wilson JW. Blood Supply to Developing, Mature and Healing Bone. A Study in Comparative Osteology. In Bone in Clinical Orthopaedics.. Sumner-Smith G. (ed). Philadelphia: WB Saunders Co; 1982: 81-158.
  • 37 Rittmann WW, Perren SM.. Cortical Bone Healing after Internal Fixation and Infection. Biomechanics and Biology.. Berlin: Springer-Verlag; 1974
  • 38 Roschger P, Plenk Jr H, Klaushofer K, Eschberger J. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha- line intensities. Scanning Microsc 1995; 9 (01) 75-86.
  • 39 Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B.. Influence of mineral content and composition on graylevels in backscattered electron images of bone. J Biomed Mater Res 1993; 27 (01) 57-64.
  • 40 Vincent J, Dhem A. Etude microrradiographique de l'ossification endochondrale. Acta Anat 1960; 40: 121-9.
  • 41 von der Mark K.. Localization of collagen types in tissues. Int Rev Connect Tissue Res 1981; (09) 265-323.
  • 42 Wallace AL, Draper ERC, Strachan RK, McCarthy ID, Hughes SPF. The vascular response to fracture micromovement. Clin Orthop 1994; 301: 281-90.