Vet Comp Orthop Traumatol 2000; 13(04): 158-164
DOI: 10.1055/s-0038-1632654
Review Article
Schattauer GmbH

Facilitation of fracture repair using low-intensity pulsed ultrasound

S. J. Warden
1   Centre for Sports Medicine Research and Education, School of Physiotherapy, The University of Melbourne, Australia
,
W. T. Wong
2   Animal Hospitals of Australia and Stud Park Veterinary Clinic, Australia
,
K. L. Bennell
1   Centre for Sports Medicine Research and Education, School of Physiotherapy, The University of Melbourne, Australia
,
J. M. McMeeken
1   Centre for Sports Medicine Research and Education, School of Physiotherapy, The University of Melbourne, Australia
,
J. D. Wark
3   Department of Medicine, The University of Melbourne, Australia
4   Bone and Mineral Service, The Royal Melbourne Hospital, Australia
› Author Affiliations
Further Information

Publication History

Received 13 April 2000

Accepted 21 June 2000

Publication Date:
09 February 2018 (online)

Summary

A recent application of ultrasound (US) therapy is to bone fractures. In two randomized controlled trials in humans, specific dosed US accelerated fresh tibial and radial fracture repair by 38%. When applied to delayed- and non-unions the same dosed US resulted in union in over 80% of cases. Similar US may augment fracture repair in veterinary practice. This paper reviews US dosages applied during fracture repair and their effect on bone healing. It concludes by discussing the clinical and practical implications of these findings to veterinary practice and the need for further research into this electrotherapeutic modality.

Low-intensity pulsed ultrasound has been shown to facilitate fresh fracture repair, reduce the incidence of delayed-union and initiate healing of fractures displaying delayedand non-union. This paper discusses these findings and their implications to veterinary practice.

 
  • REFERENCES

  • 1 Albers R, Patka P, Janssen I, Van der Krans A. An effective therapy for nonunions: Low-intensity ultrasound. 21st Triennial World Congress Societe Internationale de Chirurgie Orthopedique et de Traumatologie: Sydney; Australia: 18-23 April, 1999
  • 2 Ardan NI, Janes JM, Herrick JF. Ultrasonic energy and surgically produced defects in bone. J Bone and Joint Surg 1957; 39A: 394-402.
  • 3 Carstensen EL. Acoustic cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 1987; 13: 597-606.
  • 4 Chan AK, Sigelmann RA, Guy AW. Calculations of therapeutic heat generated by ultrasound in fat-muscle-bone layers. IEEE Trans Biomed Eng. 1974. BME-21: 280-4.
  • 5 Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK. Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Rel Res 1997; 337: 198-207.
  • 6 Cook SD, Salkeld SL, Popich LS, Ryaby JP. Treatment of osteochondral defects with low intensity pulsed ultrasound. American Academy of Orthopaedic Surgeons 66th Annual Meeting; Anaheim, California: February 4-8, 1999
  • 7 Déniz AS, Marrero I, Saavedra P, Méndez J, Sánchez J, Melián A, García A, Castillo MA, Gómez A. Aceleración de la consolidacion de fracturas er ratas empleando ultrasonido a dosis terapeuticas. Rehabilitacion 1998; 32: 247-53.
  • 8 Doan N, Reher P, Meghji S, Harris M. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 1999; 57: 409-19.
  • 9 Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 1983; 101: 153-9.
  • 10 Dyson M, Brookes M. Stimulation of bone repair by ultrasound. In: Ultrasound ‘82. Lerski RA, Morley P. (eds). Oxford: Pergamon Press; 1983: 61-6.
  • 11 Emani A, Larsson A, Petren-Mallmin M, Larsson S. Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop Rel Res 1999; 368: 220-9.
  • 12 Font J, Franch J, Cairo J. A review of 116 clinical cases treated with external fixators. Vet Comp Orthop Traumatol 1997; 10: 173-82.
  • 13 Frankel VH. Results of prescription use of pulse ultrasound therapy in fracture management. In: Surgical Technology International VII. Szabo Z, Lewis JE, Fantini GA, Savalgi RS. (eds). San Francisco: Universal Medical Press; 1998: 389-93.
  • 14 Frankel VH, Koval KJ, Kummer FJ. Ultrasound treatment of tibial nonunions. American Academy of Orthopaedic Surgeons 66th Annual Meeting; Anaheim, California: February 4-8, 1999
  • 15 Fujii M, Sakamoto K, Toda Y, Negishi A, Kanai H. Study of the cause of the temperature rise at the muscle-bone interface during ultrasound hyperthermia. IEEE Trans Biomed Eng 1999; BME-46: 494-504.
  • 16 Fujioka H, Tsunoda M, Noda M, Matsui N, Mizuno K. Treatment of ununited fracture of the hook of hamate by low-intensity pulsed ultrasound: A case report. J Hand Surg 2000; 25A: 77-9.
  • 17 Glazer PA, Heilmann MR, Lotz JC, Bradford DS. Use of ultrasound in spinal arthrodesis: A rabbit model. Spine 1998; 23: 1142-8.
  • 18 Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Rel Res 1998; 355S: S216-29.
  • 19 Hadjiargyrou M, McLeod KJ, Halsey M, Rubin CT. The temporal expression of osteopontin mRNA in the fracture callus is altered by low intensity ultrasound. J Bone Miner Res 1997; 12 (Suppl. 01) S425.
  • 20 Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracturehealing by non-invasive, low-intensity pulsed ultrasound. J Bone and Joint Surg 1994; 76A: 26-34.
  • 21 Heckman JD, Sarasohn JKhan. The economics of treating tibia fractures: The cost of delayed unions. Bull Hosp Jt Dis 1997; 56: 63-72.
  • 22 Hekkenberg RT, Oosterbaan WA, van Beekum WT. Evaluation of ultrasound therapy devices. Physiotherapy 1986; 72: 390-5.
  • 23 Heppenstall RB, Frey J, Ryaby J, McCabe J. Non-invasive nonunion treatment by pulsed low-intensity ultrasound. 21st Triennial World Congress Societe Internationale de Chirurgie Orthopedique et de Traumatologie; Sydney, Australia: 18-23 April, 1999
  • 24 IEC 1689. Ultrasonics-Physiotherapy systems-Performance requirements and methods of measurement in the frequency range 0.5 MHZ to 5 MHZ. Geneva, Switzerland: International Electrotechnical Commission; 1996
  • 25 Ito M, Azuma Y, Harada Y, Takagi H, Ohta T, Komoriya K, Jinguishi S. Low intensity pulsed ultrasound accelerates fracture healing in a rat femoral fracture model. Trans Orthop Res Soc 1998; 23: 732.
  • 26 Ito M, Azuma Y, Ohta T, Komoriya K. Effects of ultrasound and 1,25-dihydroxyvitamin D-3 on growth factor secretion in co-culmedullary fixed tibial fractures. Clin Orthop Rel Res 1999; 368: 220-9.
  • 27 Jensen JE. Stress fracture in the world class athlete: A case study. Med Sci Sports Exerc 1998; 30: 783-7.
  • 28 Klug W, Franke W-G, Knoch H-G. Scintigraphic control of bone-fracture healing under ultrasonic stimulation: An animal experimental study. Eur J Nucl Med 1986; 11: 494-7.
  • 29 Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun 1999; 256: 284-7.
  • 30 Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radius fractures with the use of specific, lowintensity ultrasound. J Bone and Joint Surg 1997; 79A: 961-73.
  • 31 Lloyd JJ, Evans JA. A calibration survey of physiotherapy ultrasound equipment in North Wales. Physiotherapy 1988; 74: 56-61.
  • 32 Mayr E, Frankel V, Ruter A. Ultrasound: An alternative healing method for non-union?. Arch Orthop Trauma Surg 2000; 120: 1-8.
  • 33 Mayr E, Rutzki M, Hausser H, Ruter A. Low intensity ultrasound accelerates healing of scaphoid fractures. 21t Triennial World Congress Societe Internationale de Chirurgie Orthopedique et de Traumatologie; Sydney, Australia: 18-23 April, 1999
  • 34 Mayr E, Wagner S, Ecker M, Rter A. Die Ultraschalltherapie bei Pseudarthrosen: 3 Fallbeschreibungen. Unfallchirurg 1999; 102: 191-6.
  • 35 Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Ohta T, Kameyama K-Z, Itoman M. Anabolic response of mouse bone-marrowderived stromal cell clonal ST2 cells to low-intenity pulsed ultrasound. Biochem Biophys Res Commun 2000; 268: 216-20.
  • 36 Nolte PA, Klein-Nulend J, Albers GHR, Marti RK, Semeins CM, Goei SW, Burger EH. Low intensity ultrasound stimulates in vitro endochondral ossification. Calcif Tissue Int 1999; 64 (Suppl. 01) S62.
  • 37 Parvizi J, Parpura V, Kinnick RR, Greenleaf JF. Low intensity ultrasound increases intracellular concentration of calcium in chondrocytes. Trans Orthop Res Soc 1997; 22: 465.
  • 38 Parvizi J, Wu C-C, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 1999; 17: 488-94.
  • 39 Payton OD, Lamb RL, Kasey ME. Effects of therapeutic ultrasound on bone marrow in dogs. Phys Ther 1975; 55: 20-7.
  • 40 Pilla AA, Mont MA, Nasser PR, Khan A, Figueiredo M, Kaufman JJ, Siffert RS. Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 1990; 04: 246-53.
  • 41 Pye SD, Milford C. The performance of ultrasound physiotherapy machines in Lothian Region, Scotland, 1992. Ultrasound Med Biol 1994; 20: 347-59.
  • 42 Rawool NM, Goldberg BB, Forsberg F, Winder AA, Talish RJ, Hume E. Power Doppler assessment of vascular changes during fracture treatment with low intensity ultrasound. Trans 83rd Radiol Soc North Am 1997; 83: 421.
  • 43 Reef VB. Treatment and prognosis for tendon and ligament injuries in the forelimb. Proceedings of the Twentieth Bain-Fellon Memorial Lectures: Lameness and Ultrasound; Queensland, Australia: July 26-31, 1998: 71-87.
  • 44 Ryaby JT, Bachner EJ, Bendo JA, Dalton PF, Tannenbaum S, Pilla AA. Low intensity pulsed ultrasound increases calcium incorporation in both differentiating cartilage and bone cell cultures. Trans Orthop Res Soc 1989; 14: 15.
  • 45 Ryaby JT, Mathew J, Pilla AA. Low-intensity pulsed ultrasound modulates adenylate cyclase activity and transforming growth factor beta synthesis. In: Electromagnetics in Biology and Medicine. Brighton CT, Pollack SR. (eds). San Francisco: San Francisco Press; 1991: 95-100.
  • 46 Sato W, Matsushita T, Nakamura K. Acceleration of increase in bone mineral content by low-intensity ultrasound energy in leg lengthening. J Ultrasound Med 1999; 18: 699-702.
  • 47 Singh M, Sobti VK, Roy KS. Effects of therapeutic ultrasound in healing of humerus fractures in dogs. Indian J Animal Sci 1997; 67: 210-1.
  • 48 Singh M, Sobti VK, Singh KI. Clinical, haematological and radiological effects of therapeutic ultrasound on the healing of femur fracture in dogs. Indian Vet J 1994; 71: 1117-9.
  • 49 Singh M, Sobti VK, Singh KI. Clinical, haematological and radiological observations on therapeutic ultrasound in humerus fracture healing in dogs. Indian J Animal Sci 1994; 64: 22-4.
  • 50 Steiss JE, Adams CC. Effect of coat on rate of temperature increase in muscle during ultrasound treatment of dogs. Am J Vet Res 1999; 60: 76-80.
  • 51 Strauss E, Gonya G. Adjunct low intensity ultrasound in Charcot neuroarthropathy. Clin Orthop Rel Res 1998; 349: 132-8.
  • 52 Strauss E, McCabe J. Treatment of Jones fractures of the foot with adjunctive use of pulsed low-intensity ultrasound stimulation. American Academy of Orthopaedic Surgeons 65th Annual Meeting; New Orleans, Louisiana: March 19-23, 1998.
  • 53 Thompson SM, Fyfe MC. A survey of output characteristics of some new therapeutic ultrasound instruments manufactured in Australia. Aust J Physiother 1983; 29: 10-3.
  • 54 Tsai C-L, Chang WH, Liu T-K. Preliminary studies of duration and intensity of ultrasonic treatments on fracture repair. Chin J Physiol 1992; 35: 21-6.
  • 55 Tsai C-L, Chang WH, Liu T-K, Song G-M. Ultrasonic effect on fracture repair and prostaglandin E2 production. Chin J Physiol 1992; 35: 27-34.
  • 56 Tsai C-L, Chang WH, Liu T-K, Song G-M. Ultrasound can affect bone healing both locally and systemically. Chin J Physiol 1991; 34: 213-22.
  • 57 Wang S-J, Lewallen DG, Bolander ME, Chao EYS, llstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 1994; 12: 40-7.
  • 58 Warden SJ, Bennell KL, McMeeken JM, Wark JD. Can conventional therapeutic ultrasound units be used to accelerate fracture repair?. Phys Ther Rev 1999; 04: 117-26.
  • 59 Warden SJ, Bennell KL, McMeeken JM, Wark JD. Acceleration of fresh fracture repair using the Sonic Accelerated Fracture Healing System (SAFHS): A review. Calcif Tissue Int 2000; 66: 157-63.
  • 60 Whitecloud TS, Salkeld SL, Ryaby JP. Acceleration of spine fusions with a low intensity pulsed ultrasound device. American Academy of Orthopaedic Surgeons 65th Annual Meeting; New Orleans, Louisiana: March 19-23, 1998
  • 61 Wiltink A, Nijweide PJ, Oosterbaan WA, Hekkenberg RT, Helders PJM. Effect of therapeutic ultrasound on endochondral ossification. Ultrasound Med Biol 1995; 21: 121-7.
  • 62 Xavier CAM, Duarte LR. Ultrasonic stimulation of bone callus: Clinical applications. Rev Brasil Ortop 1983; 18: 73-80.
  • 63 Yang K-H, Parvizi J, Wang S-J, Lewallen DG, Kinnick RR, Greenleaf JF, Bolander ME. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 1996; 14: 802-9.
  • 64 Yi CH, Kim JM, Hwang TS. Effect of therapeutic ultrasound on bone repair. Proceedings of the 13th International Congress of the World Confederation for Physical Therapy; Yokohama, Japan: 1999: 63.
  • 65 Zorlu Ü, Tercan M, Özyazgan I, Taskan I, Kardas Y, Balkar F, Öztürk F. Comparative study of the effect of ultrasound and electrostimulation on bone healing in rats. Am J Phys Med Rehabil 1998; 77: 427-32.