Vet Comp Orthop Traumatol 2002; 15(02): 57-66
DOI: 10.1055/s-0038-1632715
Original Research
Schattauer GmbH

An in vitro biomechanical comparison between bone plate and interlocking nail

3-D interfragmentary motion and bone strain analysis in ostectomized canine femurs
A. Bernardé
1   Clinique Vétérinaire des Quais, Blois, France
2   Ecole Nationale Vétérinaire de Maisons-Alfort, Maisons-Alfort, France
,
A. Diop
3   laboratoire de Biomécanique, Ecole Nationale Supérieure d’Arts et Métiers, Paris, France
,
N. Maurel
3   laboratoire de Biomécanique, Ecole Nationale Supérieure d’Arts et Métiers, Paris, France
,
E. Viguier
2   Ecole Nationale Vétérinaire de Maisons-Alfort, Maisons-Alfort, France
› Author Affiliations
Further Information

Publication History

Received 24 September 2000

Accepted 30 January 2001

Publication Date:
07 February 2018 (online)

Summary

In order to compare the interfragmentary motion and bone strains in ostectomized canine femurs, stabilized with either an 8 mm interlocking nail system (IN) or a 10-hole 3.5 mm dynamic compression broad plate (DCP), ten pairs of adult canine femurs with a 25 mm mid-diaphyseal gap were used. The left femurs were implanted with a DCP and eight bi-cortical screws, and the right femurs were implanted with an IN and three screws. Eccentric axial loading and cranio-caudal bending were successively performed on every specimen. Employing an opto-electronic device, interfragmentary (axial, transverse and rotational) motion was measured during non-destructive tests. Bone strains were measured at three elective sites, with strain gauges in four pairs of the specimen. The mean values of axial and transverse motion were compared using a paired t-test within each group (P <0.05). Strain values were compared using a numerical scale and a qualitative analysis. Transverse motion was higher with DCP, whereas axial motion was higher with IN. Bone strain analysis demonstrated lower “stress protection” near the gap with IN. Those comparative results are interpretative: IN may be an interesting alternative implant for unstable diaphyseal femoral fracture repair in dogs.

 
  • References

  • 1 Adrian ML, Roy WE, Karpovitch PV. Normal gait of the dog: An electrogoniometric study. Am J Vet Res 1966; 27: 90-5.
  • 2 Akeson WH, Woo S, Rutherford L. et al. The effects of rigidity of internal fixation plates on long bone remodeling. Acta Orthop Scand 1976; 47: 241-9.
  • 3 Allen K, Decamp CE, Braden TD. et al. Kinematic gait analysis of the trot in healthy mixed breed does. Vet Comp Orthop Traum 1994; 07: 148-53.
  • 4 Aron DN, Palmer RH, Johnson AL. Biologic Strategies and a Balanced Concept for Repair of Highly Comminuted Long Bone Fractures. Comp Cont Ed Pract Vet 1995; 17: 35-8.
  • 5 Beaupré GS, Carter DR, Dueland RT. et al. A biomechanical assessment of plate fixation, with insufficient bony support. J Orthop Res 1988; 06: 721-9.
  • 6 Bernardé A. Comportement biomécanique comparé in-vitro entre plaque vissée et clou verrouillé sur un modèle de fracture diaphysaire instable de femur de chien. Mémoire de DEA LBM 1999, ENSAM 151 bd de LHôpital, F 75013 Paris. 1999
  • 7 Bernardé A, Diop A, Maurel N. et al. An in vitro biomechanical study of bone plate and interlocking nail in a canine diaphyseal femoral fracture model. Vet Surgery 2001; 30: 397-408.
  • 8 Brinker WO, Piermattei DL, Flo GL. Manuel dorthopédie et de traitement des fractures des petits animaux (ed 2). Edition du Point vétérinaire 1986; 110-126.
  • 9 Brown SA, Mayor MB. Intramedullary nailing with metal and plastics. In: Uhthoff HK. (ed): Current Concepts of Internal Fixation of Fractures. Springer-Verlag; Basel: 1980: 423-424.
  • 10 Budsberg SC, Jevens DJ, Brown J. et al. Evaluation of limb symmetry indices, using ground reaction forces in healthy dogs. Am J Vet Res 1993; 54: 1569-74.
  • 11 Carter DR, Vasu R, Harris WH. The plated femur: relationships between the changes in bone stresses and bone loss. Acta Orthop Scand 1981; 52: 241-8.
  • 12 Carter DR, Vasu R, Spengler DM. et al. Stressfields in the unplated and plated canine femur calculated from in vivo strain measurements. J Biomech 1981; 14: 63-70.
  • 13 Claes L, Augat P, Suger G. et al. Influence of Size and Stability of the Osteotomy Gap on the Success of Fracture Healing. J Orthop Res 1997; 15: 577-84.
  • 14 Cochran GVB. Effects of internal fixation plates on mechanical deformation of bone. Surg Forum 1969; 20: 469.
  • 15 Cochran GVB. Biomechanics of orthopaedic materials. In: Cochran GVB. (ed): A Primer of Orthopaedic Biomechanics. Churchill Livingstone; 1982: 90-93.
  • 16 Duda GN, Eckert-Hübner K, Sokiranski R. et al. Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomechanics 1998; 31: 201-10.
  • 17 Dueland RT, Berglund L, Vanderby Jr R. et al. Structural Properties of Interlocking Nails, Canine Femora, and Femur-Interlocking Nail Constructions. Vet Surg 1996; 25: 386-96.
  • 18 Dueland RT, Johnson KA, Roe SC. et al. Interlocking nail treatment of diaphyseal long-bone fractures in dogs. J Am Vet Med Assoc 1999; 214: 59-66.
  • 19 Dueland RT, Johnson KA. Interlocking nail fixation of diaphyseal fractures in the dog. A mul-Bernardé et al. ti-centre study of 1991-92 cases. Vet Surg. 1993 22. 377 (abstrj
  • 20 Duhautois B. L’enclouage verrouillé en chirurgie vétérinaire: de la conception aux premiers cas cliniques. Prat Méd Chir Anim Comp 1993; 28: 657-83.
  • 21 Duhautois B. L’enclouage verrouillé vétérinaire: étude clinique rétrospective sur 45 cas. Prat Méd Chir Anim Comp 1995; 30: 613-30.
  • 22 Durall I, Diaz MC, Morales I. An experimental study of compression of femoral fractures by an interlocking intramedullary pin. Vet Comp Orthop Pract 1993; 34: 26-30.
  • 23 Durall I, Diaz MC. Early experience With the Use of an Interlocking Nail for the Repair of Canine Femoral Shaft Fractures. Vet Surg 1996; 25: 397-406.
  • 24 Foux A, Yeadon AJ, Uhthoff HK. Improved fracture healing with less rigid plates. A biomechanical study in dogs. Clin Orthop 1997; 339: 232-45.
  • 25 Gardner TN, Evans M, Kyberd PJ. An Instrumented Spacial Linkage for Monitoring Relative Three-Dimensional Motion Between Fracture Fragments. J Biomech Eng 1996; 118: 586-93.
  • 26 Gunst MA. Interference with the blood supply through plating of intact bone. In: Uhthoff HK. (ed): Current Concepts of Internal Fixation of fractures. Springer-Verlag: Basel; 1979: 268-71.
  • 27 Hajek PD, Bicknell Jr HR, Bronson WE. et al. The Use of One Compared with Two Distal Screws in the Treatment of Femoral Shaft Fractures with Interlocking Intramedullary Nailing. J Bone Joint Surg 1993; 75 (4): 519-25.
  • 28 Hulse D, Hyman B. Biomechanics of fracture fixation failure. Vet Clin North Am 1991; 21: 647-67.
  • 29 Hulse D, Hyman W, Nori M. et al. Reduction in Plate Strain by Addition of an Intramedullary Pin. Vet Surg 1997; 26: 451-9.
  • 30 Johnston SA, Lancaster R, Illubard RP. et al. A biomechanical comparison of the 7-hole 3.5 mm broad dynamic compression plate and the 5-hole 4.5 mm narrow dynamic compression plate. Vet Surg 1990; 19: 68-9.
  • 31 Kenwright J, Goodship A, Evans M. The influence of intermittent micromovement upon the healing of experimental fractures. Orthopedics 1984; 07: 481-4.
  • 32 Klemm KW, Borner M. Interlocking nailing of complex fractures of the femur and tibia. Clin Orthop Rel Res 1985; 212: 89-100.
  • 33 Làfmann P, Nilsson OS, Brosjô O. et al. Stress shielding by rigid fixation studied in osteotomized rabbit tibiae. Acta Orthop Scand 1989; 60: 718-22.
  • 34 Lopez MJ, Wilson DG, Vanderby Jr R. et al. An In Vitro Biomechanical Comparison of an Interlocking Nail System and Dynamic Compression Plate Fixation of Ostectomized Equine Third Metacarpal Bones. Vet Surg 1999; 28: 333-40.
  • 35 Me Duffee LA, Stover SM, Taylor KT. An In Vitro Biomechanical Investigation of the Mechanical Properties of Dynamic Compression Plated Osteotomized Adult Equine Tibiae. Vet Surg 1997; 26: 126-36.
  • 36 Me Laughlin RM, Miller CW, Taves CL. et al. Force plate analysis of triple pelvic osteotomy for the treatment of canine hip dysplasia. Vet Surg 1991; 20: 291-7.
  • 37 Merloz Ph, Maurel N, Marchard D. et al. Rigidité tridimensionnelle de (“appareil d”Ilizarov (original et modifié) implanté au femur. Revue de Chirurgie orthopédique 1991; 77: 65-76.
  • 38 Moyen BJ, Lahey Jr PJ, Weinberg EH. et al. Effects on intact femora of dogs of the application and removal of metal plates: a metabolic and structural study comparing stiffer and more flexible plates. J Bone Joint Surg [Am] 1978; 60-A: 940-7.
  • 39 Muir P, Johnson KA, Markel MD. Area Moment of Inertia for Comparison of Implant Cross-Sectionnal Geometry and Bending Stiffness. Vet Comp Orthop Traumatol 1995; 08: 146-52.
  • 40 Muir P, Johnson KA. Tibial intercalary allograft incorporation: Comparison of fixation with locked intramedullary nail and dynamic compression plate. J Orthop Res 1995; 13: 132-7.
  • 41 Olerud S, Danchkwart-Liliestrom G. Fracture healing in compression osteosynthesis in the dog. J Bone Joint Surg 1968; 5011: 344-6.
  • 42 Olmstead ML. Complications of Fractures Repaired with Plates and Screws. Vet Clin North Am: Small Anim Pract 1991; 21: 669-86.
  • 43 Paavolainen P, Karaharju E, Slàtis P. et al. Effect of rigid plate fixation on structure and mineral content of cortical bone. Clin Orthop 1978; 136: 287-93.
  • 44 Park SH, O’Connor K, Me Kellop H. et al. The Influence of Active Transverse or Compressive Motion on Fracture-Healing. J Bone Joint Surg 1998; 80-A: 868-77.
  • 45 Perren SM. The concept of biological plating using the limited contact: dynamic compression plate (LC-DCP)-Scientific background, design and application. Injury 1991; 22: 1-41.
  • 46 Prieur WD, Summer-Smith G. Aim of the AO/ASIF technique. In: Blinker WO, Hohn RB, Prieur WD. (eds): Manual of internal fixation in small animals. Springer Verlag: Berlin; 1984: 6-7.
  • 47 Rand JA, An KN, Chao EYS. et al. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg 1981; 63-A: 427-42.
  • 48 Rhinelander FW. Effects of medullary nailing on the normal blood supply of diaphyseal cortex, An instructionneal course. Led Am Acad Orthop Surg 1973; 22: 161.
  • 49 Riggs CM, DeCamp CE, Soutas-Little RW. et al. Effects of subject velocity on force platemeasured ground reaction forces in healthy Greyhounds at the trot. Am J Vet Res 1993; 54: 1523-6.
  • 50 Ring D, Jupiter JB, Sanders RA. et al. Complex nonunion of fractures of the femoral schaft treated by wave-plate osteosynthesis. J Bone Joint Surg-Br 1997; 79 (02) 289-94.
  • 51 Rosson JW, Petley G, Transverseer J. Bone structure after removal of internal fixation plates. J Bone Joint Surg [Br] 1991; 73-B: 65-7.
  • 52 Strômberg L, Dalen N. Atrophy of cortical bone caused by rigid internal fixation plates. Acta Orthop Scand” 1978; 49: 448-56.
  • 53 Terjesen T, Nordby A, Arnulf V. Bone atrophy after plate fixation. Acta Orthop Scand 1984; 55: 698-702.
  • 54 Terjesen T, Nordby A, Arnulf V. Stress-protection after plate fixation. Acta Orthop Scand 1985; 56: 416-8.
  • 55 Tonino AJ, Davidson CL, Klopper PJ. et al. Protection from stress in bone and its effects: experiments with stainless steel and plastic plates in dogs. J Bone Joint Surg [Br] 1976; 58-B: 107-13.
  • 56 Tornkvist H, Hearn TC, Schatzker J. The Strength of plate fixation in relation to the number and spacing of bone screws. J Orthop Trauma 1996; 10 (3): 204-8.
  • 57 Uhthoff HK, Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Clin Orthop 1971; 81: 165-70.
  • 58 Uthoff HK, Finnegan MA. The role of rigidity in fracture fixation: an overview. Arch Orthop Trauma Surg 1984; 102: 163-5.
  • 59 Uthoff HK, Foux A, Yeadon A. et al. Axially flexible (AF) bone plates improve healing by 40% in one third of the time: an experimental study in dogs. Paper presented at the Third Conference of the European Orthopaedic Research Society, Paris, France. 1993; April 19-20.
  • 60 Vasseur PB, Paul HA, Crumley L. Evaluation of fixation devices for prevention of rotation in transverse fractures of the canine femoral shaft: An in vitro study. Am J Vet Res 1984; 45: 1504-7.
  • 61 Wiss DA, Fleming CH, Matta JM. et al. Comminuted and rotationally unstable fractures of the femur treated with an interlocking nail. Clin Orthop Rel Res 1986; 212: 35-47.
  • 62 Woo SLY, Lothringer KS, Akeson WH. et al. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1984; 01: 431-5.
  • 63 Woodart PL, Self J, Calhoun J. et al. The effect of implant axial and torsionnal stiffness on fracture healing. J Orthop Trauma 1988; 01: 331-40.
  • 64 Yamagishi M, Yoshimura Y. The biomechanics of fracture healing. J Bone Joint Surg [Am] 1955; 37A: 1035-68.