RSS-Feed abonnieren
DOI: 10.1055/s-0038-1632989
Osteoinductive properties of the bone marrow Myth or reality
Publikationsverlauf
Received
04. Juli 2005
Accepted
29. Januar 2006
Publikationsdatum:
08. Februar 2018 (online)
Summary
The osteogenic potential of red bone marrow was first reported more than 100 years ago. Since then, studies have reported controversial results that do not confirm nor disprove the capacity of fresh red bone marrow to produce bone. Researches have been focused on techniques that improve the efficiency of the bone marrow, including: the increase of the concentration of the mesenchymal stem cells in the aspirated bone marrow, the combination with a ‘carrier’ that helps to maintain the mesenchymal stem cells and guides and supports the vascular ingrowth in the defect, or the combination with bone growth factors that stimulate the marrow stromal cells to differentiate into bone forming cells. Each of these techniques has its drawbacks and increases the expenses of an operation. On the other hand, the synergistic effect observed with these combinations does not resolve the problem of the osteogenic capacity of pure bone marrow, which still remains questionable.
-
References
- 1 Basset CAL. Clinical implications of cell function in bone grafting. Clin Orthop 1972; 87: 49-59.
- 2 Tiedeman JJ, Connolly JF, Strates BS. et al. Treatment of nonunion by percutaneous injection of bone marrow and demineralised bone matrix. An experimental study in dogs. Clin Orthop 1991; 268: 294-302.
- 3 Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995; 16: 9-15.
- 4 Lane JM, Yasko AW, Tomin E. et al. Bone marrow and recombinant human BMP-2 in osseous repair. Clin Orthop 1999; 361: 216-27.
- 5 den Boer FC, Wippermann BW, Blokhuis TJ. et al. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 2003; 21: 521-8.
- 6 Andrades JA, Han B, Becera J. et al. A recombinant human TGF-beta 1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation ofbone marrow mesenchymal cells. Exp Cell Res 1999; 250: 485-98.
- 7 Aubin JE. Osteoprogenitor cell frequency: Role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999; 72: 396-410.
- 8 Grundel RE, Chapman MW, Yee T. et al. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clin Orthop 1991; 266: 244-58.
- 9 Muschler GF, Nitto H, Boehm CA. et al. Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblast progenitors. J Orthop Res 2001; 19: 117-25.
- 10 Werntz JR, Lane JM, Burstein AH. et al. Qualitative and quantitative analysis of orthotopic bone regeneration by marrow. J Orthop Res 1996; 14: 85-93.
- 11 Deans RJ, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hematol 2000; 28: 875-84.
- 12 Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: The influence of aspiration volume. J Bone Joint Surg Am 1997; 79-A: 1699-709.
- 13 Muschler GF, Midura RJ. Connective tissue progenitors: Practical concepts for clinical applications. Clin Orthop 2002; 395: 66-80.
- 14 Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop 1995; 313: 8-18.
- 15 Devine MJ, Mierisch CM, Jang E. et al. Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 2002; 20: 1232-9.
- 16 Majors AK, Boehm CA, Nitto H. et al. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 1997; 15: 546-57.
- 17 Ekelund A, Brosjö O, Nilsson OS. Experimental induction of heterotopic bone. Clin Orthop 1991; 263: 102-12.
- 18 Gronthos S, Simmons PJ, Graves SE. et al. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001; 28: 174-81.
- 19 Ongpipattanakul B, Nguyen T, Zioncheck TF. et al. Development of tricalcium phosphate/amylopectin paste combined with recombinant human transforming growth factor beta 1 as abone defect filler. J Biomed Mater Res 1997; 36: 295-305.
- 20 Tagaki K, Urist M. The role of bone marrow in bone morphogenetic protein-induced repair of femoral massive diaphyseal defects. Clin Orthop 1982; 171: 224-31.
- 21 Burwell R.G.. The function of bone marrowinthe incorporation of a bone graft. Clin Orthop 1985; 200: 125-41.
- 22 Nade S. Stimulating osteogenesis. Injury 1994; 25: 577-83.
- 23 Connolly JF, Guse R, Tiedeman J. et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop 1991; 266: 259-70.
- 24 Curylo LJ, Johnstone B, Petersilge CA. et al. Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 1999; 24: 434-8.
- 25 Boden SD, Martin GJ, Morone M. et al. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 1999; 24: 320-7.
- 26 Cinotti G, Patti AM, Vulcano A. et al. Experimental posterolateral spinal fusion with porous ceramics and mesenchymal stem cells. J Bone Joint Surg Br 2004; 86-B: 135-42.
- 27 Wippermann B, Donow C, Schratt HE. et al. The influence of hydroxyapatite granules on the healing of a segmental defect filled with autologous bone marrow. Ann Chir Gynaecol 1999; 88: 194-7.
- 28 Egrise D, Martin D, Vienne A. et al. The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 1992; 13: 355-61.
- 29 Krebsbach PH, Kuznetsov SA, Satomura K. et al. Bone formation in vivo: Comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997; 63: 1059-69.
- 30 Tsuchida H, Hashimoto J, Crawford E. et al. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res 2003; 21: 44-53.
- 31 Arinzeh TL, Peter SJ, Archambault MP. et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 2003; 85-A: 1927-35.
- 32 Stenderup K, Justesen J, Eriksen EF. et al. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. JBone Miner Res 2001; 16: 1120-9.
- 33 Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278-94.
- 34 Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone formation, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994; 56: 283-94.
- 35 Connolly JF, Guse R, Tiedeman J. et al. Autologous marrow injection for delayed unions of the tibia – a preliminary report. J Orthop Trauma 1989; 3: 276.
- 36 Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55-62.
- 37 Joyner CJ, Bennett A, Triffitt JT. Identification and enrichment of human osteoprogenitor cells by differentiation stage-specific monoclonal antibodies. Bone 1997; 21: 1-6.
- 38 Herbertson A, Aubin JE. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures. Bone 1997; 21: 491-500.
- 39 Martin GJ, Boden SD, Titus L. et al. New formulations of demineralised bone matrix as amore effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 1999; 24: 637-45.
- 40 Yuan HP, De Bruijn JD, Zhang XD. et al. Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. J Mater Sci Mater Med 2001; 12: 761-6.
- 41 Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 1997; 3: 173-85.
- 42 Kuboki Y, Takita H, Koboyashi D. et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 1998; 39: 190-9.
- 43 Oonishi H, Hench LL, Wilson Jetal. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 1999; 44: 31-43.
- 44 Walsh WR. et al. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model. J. Orthop Res 2003; 21: 655-61.
- 45 Mankani MH, Kuznetsov SA, Fowler B. et al. In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape. Biotechnol Bioeng 2001; 72: 96-107.
- 46 Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32: 160-7.
- 47 Yasko AW, Lane JM, Fellinger EJ. et al. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (RHBMP-2) – A radiographic, histological, and biomechanical study in rats. J Bone and Joint Surg Am 1992; 74-A: 659-70.
- 48 Itoh H, Ebara S, Kamimura M. et al. Experimental spinal fusion with use of recombinant human bone morphogenetic protein 2. Spine 1999; 24: 1402.
- 49 Cheng H, Jiang W, Phillips FM. et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A: 1544-52.
- 50 Clarke SA, Brooks RA, Lee PTH. et al. Bone growth into ceramic-filled defect around an implant. J Bone Joint Surg Br 2004; 86-B: 126-34.
- 51 Buckwalter JA, Glimcher MJ, Cooper RR. et al. Bone biology. Part II: Formation, form, modelling, remodelling, and regulation of cell function. J Bone Joint Surg Am 1995; 77-A: 1276-89.
- 52 Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defect of articular cartilage. J Bone Joint Surg Am 1997; 79-A: 1452-63.
- 53 Beck LS, Wong RL, DeGuzman L. et al. Combination ofbone marrow and TGF-beta1 augment the healing of critical-sized bone defects. J Pharm Sci 1998; 87: 1379-86.