Methods Inf Med 2004; 43(04): 403-408
DOI: 10.1055/s-0038-1633883
Original Article
Schattauer GmbH

Light Fields for Minimal Invasive Surgery Using an Endoscope Positioning Robot

F. Vogt
1   Chair for Pattern Recognition, University of Erlangen-Nuremberg, Erlangen, Germany
,
S. Krüger
2   Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
J. Schmidt
1   Chair for Pattern Recognition, University of Erlangen-Nuremberg, Erlangen, Germany
,
D. Paulus
3   Institute for Computational Visualistics, University of Koblenz-Landau, Koblenz, Germany
,
H. Niemann
1   Chair for Pattern Recognition, University of Erlangen-Nuremberg, Erlangen, Germany
,
W. Hohenberger
2   Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
C. H. Schick
2   Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. Februar 2018 (online)

Summary

Objectives: To generate a fast and robust 3-D visualization of the operation site during minimal invasive surgery.

Methods: Light fields are used to model and visualize the 3-D operation site during minimal invasive surgery. An endoscope positioning robot provides the position and orientation of the endoscope. The a priori unknown transformation from the endoscope plug to the endoscope tip (hand-eye transformation) can either be determined by a three-step algorithm, which includes measuring the endoscope length by hand or by using an automatic hand-eye calibration algorithm. Both methods are described in this paper and their respective computation times and accuracies are compared.

Results: Light fields were generated during real operations and in the laboratory. The comparison of the two methods to determine the unknown hand-eye transformation was done in the laboratory. The results which are being presented in this paper are: rendered images from the generated light fields, the calculated extrinsic camera parameters and their accuracies with respect to the applied hand-eye calibration method, and computation times.

Conclusion: Using an endoscope positioning robot and knowing the hand-eye transformation, the fast and robust generation of light fields for minimal invasive surgery is possible.

 
  • References

  • 1 Vogt F, Klimowicz C, Paulus D, Hohenberger W, Niemann H, Schick CH. Bildverarbeitung in der Endoskopie des Bauchraums. In Handels H, Horsch A, Lehmann T, Meinzer HP. (eds) 5. Workshop Bildverarbeitung für die Medizin; 2001 (October); Lübeck, Germany. Berlin: Springer; 2001: 320-4.
  • 2 Palm C, Lehmann T, Spitzer K. Bestimmung der Lichtquellenfarbe bei der Endoskopie makrotexturierter Oberflächen des Kehlkopfs. In Franke KH. (ed) 5. Workshop Farbbildverarbeitung; Farbbildverarbeitung. 1999. Ilmenau, Germany. Ilmenau: Ilmenau Schriftenreihe des Zentrums für Bild- und Signalverarbeitung e.V. Ilmenau; 3-10.
  • 3 Vogt F, Paulus D, Niemann H. Highlight Substitution in Light Fields. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), 2002 (September); Rochester, USA. IEEE Computer Society Press; 637-40.
  • 4 Thormählen T, Broszio H, Meier PN. Automatische 3D-Rekonstruktion aus endoskopischen Bildfolgen. In: Meiler, et al. [12]. 207-10.
  • 5 Levoy M, Hanrahan P. Light Field Rendering. Computer Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH). 1996: 31-42.
  • 6 Heigl B, Koch R, Pollefeys M, Denzler J, Gool LV. Plenoptic Modeling and Rendering from Image Sequences Taken by a Hand-Held Camera. In Förstner W, Buhmann J, Faber A, Faber P. (eds) Mustererkennung; 1999 (September). Heidelberg; Springer: 2001: 94-101.
  • 7 Pollefeys M. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences. Katholieke Universiteit Leuven, Belgium; May. 1999
  • 8 Holl K, Wies W, Wurm G. Clinical Benefit of Image Guidance in Neurosurgery. In Lempke HU, Vannier MW, Inamura K, Farman AG, Doi K. (eds) Computer Assisted Radiology and Surgery, Proceedings of the 15th International Congress and Exhibition CARS, 2001. Amsterdam: Elsevier Science B.V; 2001: 99-101.
  • 9 Scheuering M, Rezk-Salama C, Barfuss H, Barth K, Schneider A, Greiner G. et al. Intraoperative Augmented Reality with Magnetic Navigation and Multi-texture Based Volume Rendering for Minimally Invasive Surgery. Rechner- und Sensorgestützte Chirurgie. 2001: 83-91.
  • 10 Tsai RY. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation 1987; Ra-3 (03) 323-44.
  • 11 Daniilidis K. Hand-Eye Calibration Using Dual Quaternions. International Journal of Robotics Research 1999; 18: 286-98.
  • 12 Meiler M, Handels H, Kruggel F, Lehmann T, Saupe D. (eds) 6. Workshop Bildverarbeitung für die Medizin 2002, Leipzig 2002. Berlin: Springer; 2002