Methods Inf Med 2003; 42(02): 143-147
DOI: 10.1055/s-0038-1634325
Original article
Schattauer GmbH

DataGrid, Prototype of a Biomedical Grid

V. Breton
1   Laboratoire de Physique Corpusculaire, CNRS-IN2P3, Campus des Cézeaux, Aubière , France
,
R. Medina
2   Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes, Université Blaise Pascal, Campus des Cézeaux, Aubière, France
,
J. Montagnat
3   Creatis, CNRS UMR 5515, INSA, – Bât. B. Pascal, Villeurbanne, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. Februar 2018 (online)

Summary

Background: The availability of large amounts of data in heterogeneous formats and the rapid progress in fields such as computer based drug design, medical imaging and medical simulations have lead to a growing demand for large computational power and easy accessibility to heterogeneous data sources. Objectives: The goal is to address these needs by deploying computing grids. Grids provide both large scale and distributed storage facilities and an increased computing power. Moreover, Grids are a promising tool to foster the synergy between bioinformatics and computerised medical imaging.

Methods: A first biomedical grid is being deployed within the framework of the DataGrid IST project (www.edg.org). The goal of the project is to provide a novel environment to support globally distributed scientific exploration involving up to multi-Perabyte datasets.

Results and Conclusions: The first biomedical applications deployed inside the project demonstrate the relevance of the grid paradigm for genomics and medical image processing. They also highlight the specific requirements of the biomedical community.

 
  • References

  • 1 Foster I, Kesselman C. The Grid, blueprint for a new computing infrastructure. Morgan Kaufman; San Francisco: 1999
  • 2 Segal B. Grid computing: the European data project. IEEE Nuclear Science Symposium and Medical Imaging Conference Lyon: 15-20 October 2000
  • 3 Thomson M, Johnson W, Goujun J, Lee J, Tier-ney B, Terdiman JF. Distributed health care imaging information systems. PACS Design and Evaluation: Engineering and Clinical Issues. volume 3035 SPIE Medical Imaging. 1997
  • 4 Graves S, Tullio J, Downs JH, Kassel N. Tele-presence in neurosurgery: the integrated remote neurosurgical system. Medicine meets virtual reality 5 1997
  • 5 von Laszewski G, Su MH, Insley JA, Foster I, Bresnahan J, Kesselman C, Thiebaux M, Rivers ML, Wang S, Tieman B, McNulty I. Real-time analysis, visualization, and Steering of Microtomography experiments at photon sources. 9thSIAM Conference on Parallel Processing for Scientific Computing April 1999
  • 6 Li JJ, Miguet S. Parallel volume rendering of medical images. EWPC’92: From theory to sound Practice pp 332-343 Barcelone: 1992
  • 7 Miguet S, Nicod JM. An optimal parallel iso-surface extraction algorithm. 4th International Workshop on Parallel Image Analysis pp 65-78 Lyon, France: December 1995
  • 8 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.
  • 9 Legré Y, Météry R, Fougas AS, Joubert M. Visual DataGridBlast. Private communication.
  • 10 Montagnat J, Davila E, Magnin IE. 3D objects visualization for remote interactive medical applications. 3D Data Visualization, Processing, and Transmission. Padova, Italy: June 2002
  • 11 Foster I, Kesselman C. Globus:A Metacomputing Infrastructure Toolkit. International J Supercomputer Applications 1997; 11 (Suppl. 02) 115-28.
  • 12 Foster I, Kesselman C, Tuecke S. The anatomy of the Grid: enabling scalable virtual organizations. International J Supercomputer Applications 2001; 15: 3.
  • 13 Guerra C, Lonardi S, Zanotti G. Analysis of secondary structures of proteins using indexing techniques. IEEE Proc. First Int. Symposium on 3D Data Processing Visualization and Transmission 2002