Methods Inf Med 1997; 36(01): 1-10
DOI: 10.1055/s-0038-1634687
Original Article
Schattauer GmbH

Hybrid Rendering of Multidimensional Image Data

K.-H. Englmeier
1   GSF – National Research Center for Environment and Health, Institute of Medical Informatics and Health Services Research, Neuherberg, Germany
,
M. Haubner
1   GSF – National Research Center for Environment and Health, Institute of Medical Informatics and Health Services Research, Neuherberg, Germany
,
A. Lösch
1   GSF – National Research Center for Environment and Health, Institute of Medical Informatics and Health Services Research, Neuherberg, Germany
,
F. Eckstein
3   Anatomische Anstalt, Ludwig-Maximilians-Universität, München, Germany
,
M. D. Seemann
2   Institut für Radiologische Diagnostik, Klinikum Großhadern, Ludwig-Maximilians-Universität, München, Germany
,
W. van Eimeren
1   GSF – National Research Center for Environment and Health, Institute of Medical Informatics and Health Services Research, Neuherberg, Germany
,
M. Reiser
2   Institut für Radiologische Diagnostik, Klinikum Großhadern, Ludwig-Maximilians-Universität, München, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
20 February 2018 (online)

Abstract:

The most important rendering methods applied in medical imaging are surface and volume rendering techniques. Each approach has its own advantages and limitations: Fast surface-oriented methods are able to support real-time interaction and manipulation. The underlying representation, however, is dependent on intensive image processing to extract the object surfaces. In contrast, volume visualization is not necessarily based on extensive image processing and interpretation. No data reduction to geometric primitives, such as polygons, is required. Therefore, the process of volume rendering is currently not operating in real time. In order to provide the radiological diagnosis with additional information as well as to enable simulation and preoperative treatment planning we developed a new hybrid rendering method which combines the advantages of surface and volume presentation, and minimizes the limitations of these approaches. We developed a common data representation method for both techniques. A preprocessing module enables the construction of a data volume by interpolation as well as the calculation of object surfaces by semiautomatic image interpretation and surface construction. The hybrid rendering system is based on transparency and texture mapping features. It is embedded in a user-friendly open system which enables the support of new application fields such as virtual reality and stereolithography. The efficiency of our new method is described for 3-D subtraction angiography and the visualization of morpho-functional relationships.

 
  • References

  • 1 Brunie L, Leitner F, Berthommier F, Cinquin P, Demongeot J. Interpretation of multimodal medical images using connectionist and variational methods. Technol Health Care 1995; 26: 91-9.
  • 2 Heath DG, Soyer PA, Kuszyk BS. et al. Three-dimensional spiral-CT during arterial portography: comparison of three rendering techniques. Radiographics 1995; 15: 1001-11.
  • 3 Hu X, Alperin N, Levin DN, Tan KK, Mengeot M. Visualization of MR angiographic data with segmentation and volume-rendering techniques. J Magn Reson Imaging 1991; 1: 539-46.
  • 4 Barillot C, Lemoine D, Le Briquer L, Lachmann F, Gibaud D. Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects. Eur J Radiol 1993; 17: 22-7.
  • 5 Hayashi N, Endo S, Kurimato M, Nishijo H, Ono T, Takaku A. Functional image-guided neurosurgical simulation system using computerized three-dimensional graphics and dipole tracing. Neurosurgery 1995; 37: 694-703.
  • 6 Groenemeyer DH, Seibel RM, Melzer A, Schmidt A. Image guided access techniques. Endosc-Surg-Allied-Technol 1995; 3: 69-75.
  • 7 Georgi C. Imaging techniques and computers. Stereo tact Funct Neurosurg 1994; 63: 8-16.
  • 8 Bendl R, Pross J, Keller M, Bürkelbach J, Schlegel W. VIRTUOS – A program for virtual radiotherapy simulation. In: Lemke HU, Inamura K, Jaffe CC, Felix R. eds. Computer Assisted Radiology 1993. Berlin: Springer; 1993: 676-82.
  • 9 Englmeier K-H, Wieber A, Milachowski KA, Hamburger C, Mittlmeier T. Methods and applications of three-dimensional imaging in orthopedics. Arch Orthop Trauma Surg 1990; 109: 186-90.
  • 10 Arbit E, Galicich JH. Importance of image guided stereotactic biopsy to confirm diagnosis in an oncological setting. Am Surg Oncol 1994; 1: 368-72.
  • 11 Peters TM, Henri CJ, Munger P. et al. Integration of stereoscopic DSA and 3D MRI for image-guided neurosurgery. Comput Med Imaging Graph 1994; 18: 289-99.
  • 12 Smith KR, Frank KJ, Buchholz RD. The Neuro Station – a, highly accurate, minimally invasive solution to frame less stereotactic neurosurgery. Comput Med Imaging Graph 1994; 18: 247-56.
  • 13 Galloway RL, Macunias RJ, Edwards CA. Interactive image-guided surgery. IEEE Trans Biomed Eng 1992; 39: 1226-31.
  • 14 Steiner H, Staudach A, Schaffer H. Threedimensional ultrasound in obstetrics and gynaecology: technique, possibilities and limitations. Hum-Reprod 1994; 9: 1773-8.
  • 15 Hoffman HM. Virtual reality meets medical education. In: Satava RM, Morgan K, Sieburg HB, Mattheus R, Christensen JP. eds. Interactive Technology and the New Paradigm/ or Healthcare. Amsterdam: IOS Press; 1995: 130-7.
  • 16 Rhodes ML. Computer Graphics in Medicine. IEEE Comput Graph Appl 1993; 11: 49.
  • 17 Nelson TR, Elvins TT. Visualization of 3D Ultrasound Data. IEEE Comput Graph Appl 1993; 11: 50-7.
  • 18 Magnenat-Thalmann N, Thalmann D. Image Synthesis Theory and Practice. Tokyo: Springer; 1987
  • 19 Lorensen WE, Cline HE. Marching Cubes: a high resolution 3D surface construction algorithm. Comput Graph 1987; 21: 163-9.
  • 20 Yun H, Park KH. Surface modeling method by polygonal primitives for visualizing three-dimensional volume data. The Visual Computer 1992; 8: 246-59.
  • 21 Müller H, Stark M. Adaptive generation of surfaces in volume data. The Visual Computer 1993; 9: 182-99.
  • 22 Foley JD, Van Dam A, Feiner SK, Hughes JF. Computer Graphics Principles and Practice. (2nd ed.). Reading: Addison-Wesley; 1992
  • 23 Gouraud H. Continuous shading of curved surfaces. IEEE Trans Comput 1971; 20: 623-9.
  • 24 Phong BT. Illumination for computer generated pictures. CACM 1975; 18: 449-55.
  • 25 Chen L, Herman GT, Reynolds RA, Udupa JK. Surface shading in the cuberille environment. IEEE Comput Graph Appl 1985; 5: 33-43.
  • 26 Samet H, Webber RE. Hierarchical data structures and algorithms for computer graphics. IEEE Comput Graph Appl 1988; 8: 48-68.
  • 27 Dzik S, Ezrielev J. Representing surfaces with voxels. Comput Graphics 1992; 16: 295-301.
  • 28 Höhne KH, Bomans M, Pommert A. 3D visualization of tomographic volume data using the generalized voxel model. The Visual Computer 1990; 6: 28-36.
  • 29 Gordon D, Reynolds R. Image space shading of 3-dimensional objects. Comput Vision Graph Image Proc 1985; 29: 361-76.
  • 30 Yagel R, Cohen D, Kaufman A. Normal estimation in 3D discrete space. The Visual Computer 1992; 8: 278-91.
  • 31 Wallis JW, Miller TR, Lerner CA, KJeerup EC. Three-dimensional display in nuclear medicine. IEEE Trans Med Imaging 1989; 8: 297-303.
  • 32 Levoy M. A hybrid ray tracer for rendering polygon and volume data. IEEE Comput Graph Appl 1990; 10: 33-40.
  • 33 Kaufman A, Yagel R, Cohen D. Intermixing surface and volume rendering. In: Höhne KH, Fuchs H, Pizer SM. eds. 3D imaging in medicine, algorithms, systems, applications NATO ASl Series Vol. 60. Berlin: Springer; 1990
  • 34 Goshtasby A, Tuner DA, Ackerman LV. Matching of tomographic slices for interpolation. IEEE Trans Med Imaging 1992; 9: 507-16.
  • 35 Herman GT, Zheng J, Buchholtz CA. Shape-based interpolation. IEEE Comput Graph Appl 1992; 12: 69-79.
  • 36 Raya SP, Udupa JK. Shape-based interpolation of multidimensional objects. IEEE Trans Med Imaging 1990; 9: 32-42.
  • 37 Haralick RM, Shapiro LG. Computer and robot vision I. Reading Mass: Addison-Wesley; 1992
  • 38 Durst MJ. Additional references to marching cubes. ACM Comput Graph 1988; 22: 72-3.
  • 39 Levoy M. Volume rendering by adaptive refinement. The Visual Computer 1990; 6: 2-7.
  • 40 Kalender WA, Wedding K, Polacin A. et al. Grundlagen der Gefüßdarstellung mit der Spiral-CT. Aktuel Radiol 1994; 4: 287-97.
  • 41 Marks MP, Napel S, Jordan JE, Enzmann DR. Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography. AJR 1993; 1606: 1267-71.
  • 42 Prokop M, Schaefer C, Kalender W A, Polacin A, Galanski M. Gefüßdarstellungen mit Spiral-Computertomographie. Radiologe 1993; 33: 694-704.
  • 43 Englmeier KH, Fink U, Haubner M. et al. Ein Verfahren zur computergestutzten dreidimensionalen Subtraktionsangiographie mit Hilfe der Spiral-Rüntgencomputertomographie. Radiologe 1996; 36: 360-4.