Nervenheilkunde 2017; 36(01/02): 33-38
DOI: 10.1055/s-0038-1635069
Muskelerkrankungen
Schattauer GmbH

Therapie metabolischer Myopathien

Treatment of metabolic myopathies
D. Lehmann
1   Klinik für Neurologie, Universitätsklinikum Halle/Saale, Halle/ Saale
,
G. Debska-Vielhaber
2   Klinik für Neurologie, Universitätsklinikum Magdeburg und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Standort Magdeburg
,
L Motlagh
1   Klinik für Neurologie, Universitätsklinikum Halle/Saale, Halle/ Saale
,
S. Zierz
1   Klinik für Neurologie, Universitätsklinikum Halle/Saale, Halle/ Saale
,
S. Vielhaber
2   Klinik für Neurologie, Universitätsklinikum Magdeburg und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Standort Magdeburg
› Author Affiliations
Further Information

Publication History

eingegangen am: 10 September 2016

angenommen am: 20 September 2016

Publication Date:
03 February 2018 (online)

Zusammenfassung

Metabolische Myopathien sind seltene Erbkrankheiten die primär die Muskulatur betreffen und hauptsächlich auf Störungen des muskulären Energiestoffwechsels beruhen. Das Krankheitsspektrum beinhaltet Störungen der Fettsäurenoxidation, der Glykogenbzw. Glykolyse und der mitochondrialen Atmungskette des Muskels. Klinisch manifestieren sich diese Erkrankungen mit einer Reihe von Symptomen wie infantile Hypotonie, Myalgien, Belastungsintoleranz, chronische oder akute Muskelschwäche, Muskelkrämpfen und Spasmen bis hin zu schwerwiegenden Komplikationen, meist der fulminanten Rhabdomyolyse. Durch verbesserte Untersuchungsalgorithmen und Einsatz neuer Techniken wie der Next-Generation-Sequenzierung werden einzelne Erkrankungen frühzeitiger diagnostiziert. Dieser Umstand ermöglicht den frühen Einsatz hochwirksamer Therapien wie bei der Pompe-Krankheit. In diesem Beitrag sollen anhand ausgewählter praxisrelevanter Erkrankungen aus dem breiten Spektrum der metabolischen Myopathien die wesentlichen Prinzipien des therapeutischen Managements dargestellt werden.

Summary

Metabolic myopathies are a group of rare inherited disorders, primarily affecting the muscles and mainly caused by dysfunctions of the muscular energy metabolism. The disease spectrum includes disorders of the fatty acid oxidation, glycogenosis or glycolysis and the mitochondrial respiratory chain of the muscle. Clinically, these diseases manifest with a variety of symptoms such as infantile hypotonia, myalgia, exercise intolerance, chronic or acute muscle weakness, muscle cramps or spasms up to serious complications including fulminant rhabdomyolysis. Improved diagnostic algorithms and the use of new technologies such as next-generation sequencing enable earlier diagnostic in individual cases allowing earlier use of highly effective therapies, e. g. Pompe’s disease. This paper describes the main therapeutic options based on selected practical-relevant diseases from the broad spectrum of metabolic myopathies.

 
  • Literatur

  • 1 Bruno C, Dimauro S. Lipid storage myopathies. Current opinion in neurology 2008; 21 (05) 601-6.
  • 2 Felig P, Wahren J. Fuel homeostasis in exercise. New England Journal of Medicine 1975; 293 (21) 1078-84.
  • 3 Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179 (4076): 899-902.
  • 4 Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M. et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. The Journal of biological chemistry 1998; 273 (32) 20378-82.
  • 5 Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S. et al. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology 1975; 25 (01) 16-24.
  • 6 Castro-Gago M, Eiris-Punal J, Novo-Rodriguez MI, Couceiro J, Camina F, Rodriguez-Segade S. Serum carnitine levels in epileptic children before and during treatment with valproic acid, carbamazepine, and phenobarbital. Journal of child neurology 1998; 13 (11) 546-9.
  • 7 Vielhaber S, Feistner H, Weis J, Kreuder J, Sailer M, Schroder JM. et al. Primary carnitine deficiency: adult onset lipid storage myopathy with a mild clinical course. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2004; 11 (08) 919-24.
  • 8 Angelini C, Govoni E, Bragaglia MM, Vergani L. Carnitine deficiency: acute postpartum crisis. Annals of neurology 1978; 04 (06) 558-61.
  • 9 Lehmann D, Zierz S. Normal protein content but abnormally inhibited enzyme activity in muscle carnitine palmitoyltransferase II deficiency. Journal of the neurological sciences 2014; 339 (1–2): 183-8.
  • 10 Motlagh L, Golbik R, Sippl W, Zierz S. MalonyCoA inhibits the S113L variant of carnitine-palmitoyltransferase II. Biochimica et biophysica acta 2016; 1861 (01) 34-40.
  • 11 Zierz S, Engel AG. Different sites of inhibition of carnitine palmitoyltransferase by malonyl-CoA, and by acetyl-CoA and CoA, in human skeletal muscle. The Biochemical journal 1987; 245 (01) 205-9.
  • 12 Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Archives of neurology 2005; 62 (01) 37-41.
  • 13 Orngreen MC, Olsen DB, Vissing J. Exercise tolerance in carnitine palmitoyltransferase II deficiency with IV and oral glucose. Neurology 2002; 59 (07) 1046-51.
  • 14 Roe CR, Yang BZ, Brunengraber H, Roe DS, Wallace M, Garritson BK. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology 2008; 71 (04) 260-4.
  • 15 Orngreen MC, Madsen KL, Preisler N, Andersen G, Vissing J, Laforet P. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology 2014; 82 (07) 607-13.
  • 16 Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BG, Hans VH. et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007; 130 (Pt 8): 2037-44.
  • 17 Olsen RK, Andresen BS, Christensen E, Bross P, Skovby F, Gregersen N. Clear relationship between ETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Human mutation 2003; 22 (01) 12-23.
  • 18 Henriques BJ, Fisher MT, Bross P, Gomes CM. A polymorphic position in electron transfer flavoprotein modulates kinetic stability as evidenced by thermal stress. FEBS letters 2011; 585 (03) 505-10.
  • 19 Horvath R. Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ 10). Journal of inherited metabolic disease 2012; 35 (04) 679-87.
  • 20 Burton BK. Newborn screening for Pompe disease: an update, 2011. American journal of medical genetics Part C, Seminars in medical genetics 2012; 160C (01) 8-12.
  • 21 Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL. et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 2007; 68 (02) 99-109.
  • 22 van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ. et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. The New England journal of medicine 2010; 362 (15) 1396-406.
  • 23 Strothotte S, Strigl-Pill N, Grunert B, Kornblum C, Eger K, Wessig C. et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with lateonset glycogen storage disease type 2: 12-month results of an observational clinical trial. Journal of neurology 2010; 257 (01) 91-7.
  • 24 Schneider I, Hanisch F, Muller T, Schmidt B, Zierz S. Respiratory function in late-onset Pompe disease patients receiving long-term enzyme replacement therapy for more than 48 months. Wiener medizinische Wochenschrift 2013; 163 (1–2): 40-4.
  • 25 Anderson LJ, Henley W, Wyatt KM, Nikolaou V, Waldek S, Hughes DA. et al. Effectiveness of enzyme replacement therapy in adults with lateonset Pompe disease: results from the NCS-LSD cohort study. Journal of inherited metabolic disease 2014; 37 (06) 945-52.
  • 26 Vielhaber S, Brejova A, Debska-Vielhaber G, Kaufmann J, Feistner H, Schoenfeld MA. et al. 24-months results in two adults with Pompe disease on enzyme replacement therapy. Clinical neurology and neurosurgery 2011; 113 (05) 350-7.
  • 27 Toscano A, Schoser B. Enzyme replacement therapy in late-onset Pompe disease: a systematic literature review. Journal of neurology 2013; 260 (04) 951-9.
  • 28 Schoser B, Stewart A, Kanters S, Hamed A, Jansen J, Chan K. et al. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and metaanalysis. Journal of neurology. 2016 im Druck.
  • 29 Lukacs Z, Nieves PCobos, Wenninger S, Willis TA, Guglieri M, Roberts M. et al. Prevalence of Pompe disease in 3,076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology 2016; 87 (03) 295-8.
  • 30 Cupler EJ, Berger KI, Leshner RT, Wolfe GI, Han JJ, Barohn RJ. et al. Consensus treatment recommendations for late-onset Pompe disease. Muscle & nerve 2012; 45 (03) 319-33.
  • 31 Schoser B, Laforet P, Kruijshaar ME, Toscano A, van Doorn PA, van der Ploeg AT. et al. 208th ENMC International Workshop: Formation of a European Network to develop a European data sharing model and treatment guidelines for Pompe disease Naarden, The Netherlands 2014. Neuromuscular disorders 2015; 25 (08) 674-8.
  • 32 Lucia A, Ruiz JR, Santalla A, Nogales-Gadea G, Rubio JC, Garcia-Consuegra I. et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. Journal of neurology, neurosurgery, and psychiatry 2012; 83 (03) 322-8.
  • 33 Lindner A, Reichert N, Eichhorn M, Zierz S. Acute compartment syndrome after forearm ischemic work test in a patient with McArdle’s disease. Neurology 2001; 56 (12) 1779-80.
  • 34 Deschauer M, Morgenroth A, Joshi PR, Glaser D, Chinnery PF, Aasly J. et al. Analysis of spectrum and frequencies of mutations in McArdle disease. Identification of 13 novel mutations. Journal of neurology 2007; 254 (06) 797-802.
  • 35 Lucia A, Quinlivan R, Wakelin A, Martin MA, Andreu AL. The ‘McArdle paradox’: exercise is a good advice for the exercise intolerant. British journal of sports medicine 2013; 47 (12) 728-9.
  • 36 Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). The Cochrane database of systematic reviews 2014; (11) CD003458.
  • 37 Vorgerd M, Zange J, Kley R, Grehl T, Husing A, Jager M. et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Archives of neurology 2002; 59 (01) 97-101.
  • 38 Sato S, Ohi T, Nishino I, Sugie H. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle & nerve 2012; 45 (03) 436-40.
  • 39 Schroers A, Kley RA, Stachon A, Horvath R, Lochmuller H, Zange J. et al. Gentamicin treatment in McArdle disease: failure to correct myophosphorylase deficiency. Neurology 2006; 66 (02) 285-6.
  • 40 Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Archives of neurology 2008; 65 (06) 786-9.