A number of classification techniques have been applied to the analysis of medical diagnostic systems and decision making. Commonly used approaches such as cluster analysis, linear discriminant analysis and Bayesian classification are subject to logical and statistical limitations. In this paper we present a methodology, called »grade of membership« analysis, which resolves many of those limitations. This methodology deals simultaneously with the dual problems of case clustering and estimation of discriminant coefficients. The methodology also permits the assessment of the reliability of externally defined medical diagnoses, multiple diagnoses for individuals, disease progression and severity, and permits the representation of patient heterogeneity within diagnostic category. Maximum likelihood principles are invoked both to obtain parameter estimates and as a basis for likelihood ratio testing of complex hypotheses about the model structure. The model is illustrated by an analysis of data on abdominal symptoms and disease.
Verff. haben eine Anzahl von Klassifikationstechniken auf die Analyse medizinisch-diagnostischer Systeme und die Entscheidungsfindung angewandt. Allgemein benutzte Methoden wie Cluster-Analyse, lineare Diskriminanzanalyse, Bayes’ Klassifikation unterliegen logischen und statistischen Einschränkungen. In dieser Arbeit wird eine Methodik vorgestellt, die »grade of membership«-Analyse genannt wird und die viele dieser Einschränkungen aufhebt. Die Methodik behandelt gleichzeitig die zweifachen Probleme des Fall-Clustering und der Abschätzung der Diskriminanzkoeffizienten. Die Methodik gestattet auch die Einschätzung der Zuverlässigkeit andernorts definierter medizinischer Diagnosen, Mehrfachdiagnosen für Einzelfälle, Progressionsgrad und Schwere der Krankheit und ermöglicht die Darstellung der Heterogenität des Patientengutes innerhalb einer diagnostischen Kategorie. Prinzipien der Maximum Likelihood werden zur Parameterschätzung und als Grundlage der Maximum-Likelihood-Quotienten-Testung komplexer Hypothesen über die Modellstrukturierung herangezogen. Das Modell wird anhand einer Analyse von Daten über Abdominalsymptome und -krankheiten beleuchtet.
Key-Words:
Cluster Analysis - Discriminant Function - Medical Diagnosis - Maximum Likelihood - Heterogeneity
Schlüssel-Wörter:
Cluster-Analyse - Diskriminanzfunktion - medizinische Diagnose - Maximum Likelihood - Heterogenität