Subscribe to RSS
DOI: 10.1055/s-0038-1638533
Section 7: Bioinformatics: Bioinformatics Linkage of Heterogeneous Clinical and Genomic Information in Support of Personalized Medicine
The authors thank George Komatsoulis for discussions on domain modeling and interoperability for caBIG™, as well as Dianne Reeves for discussion on data element reuse and Denise Warzel for discussions on the cancer data standards repository.Publication History
Publication Date:
05 March 2018 (online)
Summary
Objectives
Biomedical Informatics as a whole faces a difficult epistemological task, since there is no foundation to explain the complexities of modeling clinical medicine and the many relationships between genotype, phenotype, and environment. This paper discusses current efforts to investigate such relationships, intended to lead to better diagnostic and therapeutic procedures and the development of treatments that could make personalized medicine a reality.
Methods
To achieve this goal there are a number of issues to overcome. Primary are the rapidly growing numbers of heterogeneous data sources which must be integrated to support personalized medicine. Solutions involving the use of domain driven information models of heterogeneous data sources are described in conjunction with controlled ontologies and terminologies. A number of such applications are discussed.
Results
Researchers have realized that many dimensions of biology and medicine aim to understand and model the informational mechanisms that support more precise clinical diagnostic, prognostic and therapeutic procedures. As long as data grows exponentially, novel Biomedical Informatics approaches and tools are needed to manage the data. Although researchers are typically able to manage this information within specific, usually narrow contexts of clinical investigation, novel approaches for both training and clinical usage must be developed.
Conclusion
After some preliminary overoptimistic expectations, it seems clear now that genetics alone cannot transform medicine. In order to achieve this, heterogeneous clinical and genomic data source must be integrated in scientifically meaningful and productive systems. This will include hypothesis-driven scientific research systems along with well understood information systems to support such research. These in turn will enable the faster advancement of personalized medicine.
-
References
- 1 Crick FHC. The Biological Replication of Macromolecues. Symp Soc Exp Biol 1958; XII: 138.
- 2 Searls DB. Data integration: challenges for drug discovery. Nat Rev Drug Discov 2005; Jan; 04 (01) 45-58.
- 3 Collins F S. Shattuck Lecture - Medical and Societal Consequences of the Human Genome Project. N Engl J Med 1999; 341: 28-37.
- 4 Abrahams E, Ginsburg GS, Silver M. The Personalized Medicine Coalition: goals and strategies. Am J Pharmacogenomics 2005; 05 (06) 345-55.
- 5 Meadows M. Genomics and personalized medicine. FDA Consum 2005; Nov-Dec; 39 (06) 12-7.
- 6 Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2006; 02: 52.
- 7 Haselden JN, Nicholls AW. Personalized medicine progresses. Nat Med 2006; May; 12 (05) 510-1.
- 8 West M, Ginsburg GS, Huang AT, Nevins JR. Embracing the complexity of genomic data for personalized medicine. Genome Res 2006; May; 16 (05) 559-66.
- 9 Gurwitz D, Lunshof JE, Altman RB. A call for the creation of personalized medicine databases. Nat Rev Drug Discov 2006; Jan; 05 (01) 23-6.
- 10 Davies SM. Pharmacogenetics, pharmacogenomics and personalized medicine: are we there yet?. Hematology Am Soc Hematol Educ Program 2006; 111-7.
- 11 Dietel M, Sers C. Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 2006; Jun; 448 (06) 744-55.
- 12 Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M, Lin Z. et al. Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J 2001; 01 (03) 167-70.
- 13 Sadee W, Dai Z. Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet 2005; Oct 15;14 Spec No. 2: R207-14.
- 14 Woodcock J. The prospects for “personalized medicine” in drug development and drug therapy. Clin Pharmacol Ther 2007; Feb; 81 (02) 164-9.
- 15 Weatherall D. Sir David Weatherall reflects on genetics and personalized medicine. Interviewed by Ulrike Knies-Bamforth. Drug Discov Today 2006; Jul; 11 (13-14): 576-9.
- 16 Sujansky W. Heterogeneous database integration in biomedicine. J Biomed Inform 2001; 34 (04) 285-98.
- 17 Alonso-Calvo R, Maojo V, Billhardt H, Martin-Sanchez F, Garcia-Remesal M, Perez-Rey D. An agent -and ontology-based system for integrating public gene, protein, and disease databases. J Biomed Inform 2007; Feb; 40 (01) 17-29.
- 18 Martin-Sanchez F, Iakovidis I, Norager S, Maojo V, de Groen P, van der Lei J. et al. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J Biomed Inform 2004; 37 (01) 30-42.
- 19 Del Fiol G, Williams MS, Maram N, Rocha RA, Wood GM, Mitchell JA. Integrating Genetic Information Resources with an EHR. AMIA Annu Symp Proc 2006; 904.
- 20 Mitchell JA. The impact of genomics on E-health. Stud Health Technol Inform 2004; 106: 63-74.
- 21 Sax U, Schmidt S. Integration of genomic data in Electronic Health Records – opportunities and dilemmas. Methods Inf Med 2005; 44 (04) 546-50.
- 22 Mitchell DR, Mitchell JA. Status of clinical gene sequencing data reporting and associated risks for information loss. J Biomed Inform 2007; Feb; 40 (01) 47-54.
- 23 Mitchell JA, McCray AT, Bodenreider O. From phenotype to genotype: issues in navigating the available information resources. Methods Inf Med 2003; 42 (05) 557-63.
- 24 Adida B, Kohane IS. 2006; GenePING: secure, scalable management of personal genomic data. BMC Genomics 07 (93) 1-10.
- 25 Sanandres-Ledesma JA, Maojo V, Crespo J, Gómez Ade la Cámara, García-Remesal M. A performance comparative analysis between rule-induction algorithms. Application to rheumatoid arthritis. Lecture Notes in Computer Science 3337: 224-34. 2004;
- 26 Pazzani M. Knowledge discovery from data?. IEEE Intelligent Systems 2000; 15 (02) 10-13.
- 27 Maojo V. Domain-specific particularities of data mining: Lessons learned. Lecture Notes in Computer Science 3337: 235-42. 2004;
- 28 Komatsoulis GA, Warzel DB, Hartel FW, Shanbhag K, Chilukuri R, Fragoso G. et al. caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability. J Biomed Inform. In press 2007 (doi:10.1016/j.jbi.2007.03.009)
- 29 Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu WL, Wright LW. NCI thesaurus: A semantic model integrating cancer-related clinical and molecular information. J Biomed Inform 2007; Feb; 40 (01) 30-43.
- 30 Hartel FW, de Coronado S, Dionne R, Fragoso G, Golbeck J. Modeling a description logic vocabulary for cancer research. J Biomed Inform 2005; 38 (02) 114-29.
- 31 Fragoso G, de Coronado S, Haber M, Hartel F, Wright L. Overview and Utilization of the NCI thesaurus. Comparative and Functional Genomics Vol 5 (08) 2004; 648-54.
- 32 de Coronado S, Haber MW, Sioutos N, Tuttle MS, Wright LW. NCI Thesaurus: using science-based terminology to integrate cancer research results. Medinfo 2004; 11 (Pt 1). 33-7.
- 33 Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H. et al. caCORE: a common infrastructure for cancer informatics. Bioinformatics 2003; 19 (18) 2404-12.
- 34 Lindberg C. The Unified Medical Language System (UMLS) of the National Library of Medicine. J Am Med Rec Assoc 1990; 61 (05) 40-2.
- 35 Tuttle MS, Sperzel WD, Olson NE, Erlbaum MS, Suarez-Munist O, Sherertz DD. et al. The homogenization of the Metathesaurus schema and distribution format. Proc Annu Symp Comput Appl Med Care 1992; 299-303.
- 36 McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R. et al. LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin Chem 2003; 49 (04) 624-33.
- 37 Kudla KM, Rallins MC. SNOMED: a controlled vocabulary for computer-based patient records. J Ahima 1998; 69 (05) 40-4. quiz 45-6.
- 38 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25 (01) 25-9.
- 39 Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, Fragoso G. et al. The MGED Ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 2006; 22 (07) 866-73.
- 40 Yu H, Friedman C, Rhzetsky A, Kra P. Representing genomic knowledge in the UMLS semantic network. Proc AMIA Symp 1999; 181-5.
- 41 Bodenreider O, Mitchell JA, McCray AT. Evaluation of the UMLS as a terminology and knowledge resource for biomedical informatics. Proc AMIA Symp 2002; 61-5.
- 42 Konagaya A. Trends in life science grid: from computing grid to knowledge grid. Pharmacogenetics Research Network and Knowledge Base. BMC Bioinformatics 2006; Dec 18;7 Suppl 5: S10.
- 43 Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W. et al. caGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics 2006; 22 (15) 1910-6.
- 44 de Knikker R, Guo Y, Li JL, Kwan AK, Yip KY, Cheung DW, Cheung KH. A web services choreography scenario for interoperating bioinformatics applications. BMC Bioinformatics 2004; Mar 10; 05: 25.
- 45 ACGT. http://www.eu-acgt.org.
- 46 Tobias J, Chilukuri R, Komatsoulis GA, Mohanty S, Sioutos N, Warzel DB. et al. The CAP cancer protocols—a case study of caCORE based data standards implementation to integrate with the Cancer Biomedical Informatics Grid. BMC Med Inform Decis Mak 2006; Jun 20; 06: 25-40. PML, 2007. http://stdsnp.genes.nig.ac.jp/index.html
- 47 HL7 SIG. http://www.haifa.ibm.com/projects/software/cgl7/specifications.html
- 48 INFOBIOMED. http://www.infobiomed.org
- 49 Kulikowski C. The Micro-Macro Spectrum of Medical Informatics. Challenges: From Molecular Medicine to Transforming Health Care in a Globalizing Society. Methods Inf Med 2002; 41: 20-4.
- 50 Kiberstis P, Roberts L. It’s not just the genes. Science 2002; 296: 685.
- 51 Lunshof JE, Pirmohamed M, Gurwitz D. Personalized medicine: decades away?. Pharmacogenomics 2006; Mar; 07 (02) 237-41.
- 52 Collins CD, Purohit S, Podolsky RH, Zhao HS, Schatz D, Eckenrode SE. et al. The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vascul Pharmacol 2006; Nov; 45 (05) 258-67.
- 53 https://www.i2b2.org/
- 54 Annas GJ. Rules for research on human genetic variation—lessons from Iceland. N Engl J Med 2000; 342: 1830-3.
- 55 de Groen PC. A healthy database: IBM creating a system for millions of Mayo Clinic patient files. Post-Bulletin. Rochester, MN: 2002. Mar 25. 1A.
- 56 Murphy SN, Mendis ME, Berkowicz DA, Kohane IS, Chueh HC. Integration of clinical and genomic data in the i2b2 architecture. AMIA Annu Symp Proc 2006; 1040.
- 57 Husser CS, Buchhalter JR, Raffo OS, Shabo A, Brown SH, Lee KE. et al. Standardization of microarray and pharmacogenomics data. Methods Mol Biol 2006; 316: 111-57.
- 58 Willard HF, Angrist M, Ginsburg GS. Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc Lond B Biol Sci 2005; Aug 29; 360 1460 1543-50.
- 59 Mitchell DR, Mitchell JA. J Biomed Inform. 2007; 40 (01) 47-54.
- 60 Leppert MF, Singh NA. Nonsyndromic seizure disorders: epilepsy and the use of the internet to advance research. Annu Rev Genomics Hum Genet 2003; 04: 437-57.
- 61 Hoffman MA. The genome enabled medical record. J Biomed Informatics 2007; 40 (01) 44-6.
- 62 de Leon J. AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert review of molecular diagnostics May 2006; 06 (03) 277-86.
- 63 Mukherjee TK, Mishra AK, Mukhopadhyay S, Hoidal JR. High concentration of antioxidants Nacetylcysteine and mitoquinone-Q induces intercellular adhesion molecule 1 and oxidative stress by increasing intracellular glutathione. J Immunol 2007; Feb 1; 178 (03) 1835-44.
- 64 Rind DM, Kohane IS, Szolovits P, Safran C, Cheuh HC, Barnett GO. Maintaining the confidentiality of medical records shared over the Internet and the World Wide Web. Annals of Internal Medicine 1997; 127 (02) 138-41.
- 65 Malin BA. An evaluation of the current state of genomic data privacy protection technology and a roadmap for the future. J Am Med Inform Assoc 2005; Jan-Feb; 12 (01) 28-34.
- 66 Deshmukh V, Hoffman MA, Arnoldi CA, Bray BE, Mitchell JA. Efficiency of CYP2C9 Genetic Test Representation for Automated Pharmacogenetic Decision Support. AMIA Annu Symp Proc. 2007 Manuscript under review.
- 67 Louis B, Mork P, Martin-Sanchez F, Halevy A, Tzarchy-Hornock P. Data integration and genomic medicine. J Biomed Infor 2007; Feb; 40 (01) 5-16.