Nervenheilkunde 2018; 37(03): 185-190
DOI: 10.1055/s-0038-1642093
Übersichtsartikel
Schattauer GmbH

Therapie der spinalen Muskelatrophie mit dem Antisense-Oligonukleotid Nusinersen

Therapy of spinal muscular atrophy with the antisense oligonucleotide nusinersen
C. Wurster
1   Abteilung Neurologie, Universitätsklinikum Ulm, Ulm
,
A. C. Ludolph
1   Abteilung Neurologie, Universitätsklinikum Ulm, Ulm
› Author Affiliations
Further Information

Publication History

eingegangen am: 01 September 2017

angenommen am: 25 October 2017

Publication Date:
02 April 2018 (online)

Zusammenfassung

Die spinale Muskelatrophie ist eine genetische Motoneuronerkrankung, die sich im Kindes- und Jugendalter manifestiert und zu einer progredienten Muskelatrophie und Muskelschwäche führt. Anhand der klinischen Symptome, deren zeitlichen Auftretens sowie dem Erreichen motorischer Meilensteine wird die Erkrankung in drei unterschiedliche Typen eingeteilt. Klinisch am schwersten betroffen sind dabei Patienten mit Typ I (Werdnig-Hoffmann), der am häufigsten auftritt und mit einer deutlich verminderten Lebenserwartung einhergeht. Bislang standen für die Behandlung der spinalen Muskelatrophie lediglich symptomatische Maßnahmen zur Verfügung. Seit Juni 2017 ist nun jedoch die Therapie der spinalen Muskelatrophie mit dem Antisense- Oligonukleotid Nusinersen (Spinraza®) für alle 5q-assoziierten Erkrankungen in Deutschland zugelassen. In dem folgenden Artikel gehen wir nach Darstellung der klinischen Symptome und Pathogenese der spinalen Muskelatrophie auf die Literatur zur Behandlung mit Nusinersen ein und diskutieren darüber hinaus die Herausforderungen bei der Behandlung von Jugendlichen und Erwachsenen mit spinaler Muskelatrophie mit dem Antisense-Oligonukleotid.

Summary

Spinal muscular atrophy is a genetic motor neuron disease of childhood and adolescence that leads to progressive muscular atrophy and muscle weakness. Based on clinical symptoms, the age of onset and the achievement of motor milestones, the disorder can be characterized in 3 subtypes. Type I disease (Werdnig-Hoffmann) is the most severe and common type accompanied by a significantly reduced life span. The standard of care for patients consisted in solely symptomatic treatment options so far. In June 2017, the antisense oligonucleotide nusinersen (Spinra®) has been approved for all 5q-associated diseases in Germany. Beyond the clinical symptoms and pathogenetic pathways of spinal muscular atrophy, we provide an overview of the recent literature regarding the drug nusinersen and discuss the potential challenges in the treatment in adolescents and adults with this antisense oligonucleotide.

 
  • Literatur

  • 1 Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, Cook SF, Lochmüller H. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017; 12 (01) 124.
  • 2 Woddke J, van Doorn P, Hoogendijk J, de Visser M. Spinal muscular atrophy type 3, Kugelberg-Welander disease. In: Neuromuscular Disease: A Case-Based Approach. Cambridge: Cambridge University Press; 2013
  • 3 Markowitz JA, Tinkle MB, Fischbeck KH. Spinal muscular atrophy in the neonate. J Obstet Gynecol Neonatal Nurs 2004; 33 (01) 12-20.
  • 4 Ogino S, Wilson RB, Gold B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet 2004; 12 (12) 1015-1023.
  • 5 Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371: 2120-2133.
  • 6 Melki J, Abdelhak S, Sheth P, Bachelot MF, Burlet P, Marcadet A, Aicardi J, Barois A, Carriere JP, Fardeau M. et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 1990; 344 (6268): 767-768.
  • 7 Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D, Dubowitz V, Zerres K, Hausmanowa-Petrusewicz I, Ott J, Munsat TL, Gilliam TC. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 1990; 344: 540-541.
  • 8 Burghes AH, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?. Nat Rev Neurosci 2009; 10 (08) 597-609.
  • 9 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J. Identification and characterization of a spinal muscular atrophydetermining gene. Cell 1995; 80: 155-165.
  • 10 Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time light Cycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358-368.
  • 11 Wirth B, Brichta L, Schrank B. et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006; 119: 422-428.
  • 12 Chen TH, Chang JG, Yang YH. et al. Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy. Neurology 2010; 75: 2190-2197.
  • 13 Mercuri E, Bertini E, Messina S. et al. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007; 68: 51-55.
  • 14 Swoboda KJ, Scott CB, Crawford TO. et al. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One 2010; 05: 12140.
  • 15 Russman BS, Iannaccone ST, Samaha FJ. A phase 1 trial of riluzole in spinal muscular atrophy. Arch Neurol 2003; 60: 1601-1603.
  • 16 Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, Lusakowska A, Comi GP, Cuisset JM, Abitbol JL, Scherrer B, Ducray PS, Buchbjerg J, Vianna E, van der Pol WL, Vuillerot C, Blaettler T, Fontoura P. Olesoxime SMA Phase 2 Study Investigators. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16 (07) 513-522.
  • 17 Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010; 50: 259-293.
  • 18 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Yamashita M, Rigo F, Hung G, Schneider E, Norris DA, Xia S, Bennett CF, Bishop KM. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017-3026.
  • 19 Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, Hua Y, Rigo F, Matson J, Hung G, Kaye EM, Shihabuddin LS, Krainer AR, Bennett CF, Cheng SH. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011; 03: 72ra18.
  • 20 Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86: 890-897.
  • 21 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Yamashita M, Rigo F, Hung G, Schneider E, Norris DA, Xia S, Bennett CF, Bishop KM. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017-3026.
  • 22 De Vivo DC. et al. Presented at the AAN Annual Meeting. Boston, MA: April 22-28 2017
  • 23 Kuntz N. et al. Presented at the AAN Annual Meeting. Boston, MA: April 22-28 2017
  • 24 Mercuri E. et al. Presented at the AAN 2017 Annual Meeting. Boston, MA: April 22-28 2017
  • 25 Fachinformation Spinraza®, Stand: Mai 2017. Biogen Idec Ltd, Innovation House, 70 Norden Road, Maidenhead Berkshire, SL6 4AY, Vereinigtes Königreich..
  • 26 Swoboda KJ, Prior TW, Scott CB. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol 2005; 57 (05) 704-712.
  • 27 Kaufmann P. et al. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch Neurol 2011; 68 (06) 779-786.
  • 28 Kariya S, Obis T, Garone C. et al. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 2014; 124: 785-800.
  • 29 Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH. Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opin Emerg Drugs 2015; 20 (03) 353-356.
  • 30 Hua Y, Liu YH, Sahashi K. et al. Motor neuron cellnonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev 2015; 29: 288-297.
  • 31 Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev 2013; 23: 330-338.
  • 32 The Lancet Neurology. Treating rare disorders: time to act on unfair prices. Lancet Neurol 2017; 16 (10) 761.
  • 33 Deutsche Apotheker Zeitung. DAZ.online Stuttgart. Nusinersen: EU lässt erstes Arzneimittel für seltene Muskelerkrankung zu. Stuttgart – 07.06.2017, 15. 30 Uhr; https://www.deutsche-apo theker-zeitung.de/news/artikel/2017/06/07/hvg/ chapter:2.
  • 34 Kaufmann P. et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 2012; 79 (18) 1889-1897.
  • 35 Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. UK SMA Research Consortium. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2017; 10 (08) 943-954.
  • 36 Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci 2017; 20 (04) 497-499.