CC BY-NC-ND 4.0 · Rev Bras Ginecol Obstet 2018; 40(05): 281-286
DOI: 10.1055/s-0038-1642600
Review Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Lipoprotein Profile Modifications during Gestation: A Current Approach to Cardiovascular risk surrogate markers and Maternal-fetal Unit Complications

Modificações do perfil lipoproteico durante a gestação: uma abordagem atual de marcadores sugestivos de risco cardiovascular e complicações materno-fetais
Ana Paula Caires dos Santos
1   Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
2   Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
,
Ricardo David Couto
1   Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
2   Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
› Author Affiliations
Further Information

Publication History

17 October 2017

24 January 2018

Publication Date:
16 May 2018 (online)

Abstract

Several changes occur in lipid metabolism during gestation due to hormonal and metabolic changes, which are essential to satisfy the nutritional demands of the maternal-fetal unit development. The gestation shows two distinct periods that begin with fat accumulation, mainly in maternal adipose tissue, and the late phase, characterized by accelerated catabolism, with the increase of fatty acids in the circulation that causes hyperlipidemia, especially the one characterized as hypertriglyceridemia. Maternal hyperlipidemia may be associated with the development of maternal-fetal complications (preterm birth, preeclampsia, vascular complications) and the development of long-term cardiovascular disease. The cardiovascular risk may not only be related to lipoproteins cholesterol content, but also to the number and functionality of circulating lipoprotein particles. This review reports the major changes that occur in lipoprotein metabolism during pregnancy and that are associated with the development of dyslipidemias, lipoprotein atherogenic phenotype, and maternal-fetal unit complications.

Resumo

Diversas mudanças ocorrem no metabolismo lipídico durante a gestação em função das alterações hormonais e metabólicas, que são essenciais para satisfazer a demanda nutricional ocasionada pelo desenvolvimento da unidade feto-placentária. O período da gestação apresenta dois momentos distintos que iniciam com acúmulo de gordura principalmente no tecido adiposo materno, e a fase tardia, caracterizada por catabolismo acelerado, com aumento de ácidos graxos na circulação causando hiperlipidemia, principalmente a aquela caracterizada como hipertrigliceridemia. A hiperlipidemia materna pode estar associada ao desenvolvimento de complicações materno-fetais (parto prematuro, pré-eclâmpsia, complicações vasculares) e de doenças cardiovasculares, a longo prazo. O risco pode estar relacionado não apenas ao teor de colesterol contido nas frações lipoprotéicas, mas também ao número e a funcionalidade das partículas lipoproteicas. Esta revisão aborda as principais mudanças que ocorrem no metabolismo lipoproteico durante a gravidez, e que estão associadas ao desenvolvimento de dislipidemias, fenótipo aterogênico e complicações materno-fetais.

 
  • References

  • 1 Winkler K, Wetzka B, Hoffmann MM. , et al. Low density lipoprotein (LDL) subfractions during pregnancy: accumulation of buoyant LDL with advancing gestation. J Clin Endocrinol Metab 2000; 85 (12) 4543-4550 . Doi: 10.1210/jc.85.12.4543
  • 2 Wild R, Weedin EA, Wilson D. Dyslipidemia in pregnancy. Cardiol Clin 2015; 33 (02) 209-215 . Doi: 10.1016/j.ccl.2015.01.002
  • 3 Emet T, Ustüner I, Güven SG. , et al. Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes. Arch Gynecol Obstet 2013; 288 (01) 49-55 . Doi: 10.1007/s00404-013-2750-y
  • 4 Kinoshita T, Shirai K, Itoh M. The level of pre-heparin serum lipoprotein lipase mass at different stages of pregnancy. Clin Chim Acta 2003; 337 (1-2): 153-156 . Doi: 10.1016/j.cccn.2003.08.002
  • 5 Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G. Triglyceride metabolism in pregnancy. Adv Clin Chem 2011; 55: 133-153 . Doi: 10.1016/B978-0-12-387042-1.00007-1
  • 6 Nelson SM, Matthews P, Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update 2010; 16 (03) 255-275 . Doi: 10.1093/humupd/dmp050
  • 7 Hubel CA, Snaedal S, Ness RB. , et al. Dyslipoproteinaemia in postmenopausal women with a history of eclampsia. BJOG 2000; 107 (06) 776-784 . Doi: 10.1111/j.1471-0528.2000.tb13340.x
  • 8 Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening?. BMJ 2002; 325 (7356): 157-160 . Doi: 10.1136/bmj.325.7356.157
  • 9 Wolf G, Wenzel U, Stahl RA, Hüneke B. . [Hypertensive disorders in pregnancy] Med Klin 2001; 96: 78-86 . Doi: 10.1007/PL00002182
  • 10 Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and women's future cardiovascular health: an underused opportunity to improve women's health?. Epidemiol Rev 2014; 36: 57-70 . Doi: 10.1093/epirev/mxt006
  • 11 Haghiac M, Basu S, Presley L, Serre D, Catalano PM, Hauguel-de Mouzon S. Patterns of adiponectin expression in term pregnancy: impact of obesity. J Clin Endocrinol Metab 2014; 99 (09) 3427-3434 . Doi: 10.1210/jc.2013-4074
  • 12 Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy - Are these the cause of the problem?. Best Pract Res Clin Endocrinol Metab 2010; 24 (04) 515-525 . Doi: 10.1016/j.beem.2010.05.006
  • 13 Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 2000; 71 (5, Suppl) 1256S-1261S
  • 14 Ryckman KK, Spracklen CN, Smith CJ, Robinson JG, Saftlas AF. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG 2015; 122 (05) 643-651 . Doi: 10.1111/1471-0528.13261
  • 15 Kitajima M, Oka S, Yasuhi I, Fukuda M, Rii Y, Ishimaru T. Maternal serum triglyceride at 24--32 weeks' gestation and newborn weight in nondiabetic women with positive diabetic screens. Obstet Gynecol 2001; 97 (5 Pt 1): 776-780 . Doi: 10.1016/S0029-7844(01)01328-X
  • 16 Schaefer-Graf UM, Graf K, Kulbacka I. , et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 2008; 31 (09) 1858-1863 . Doi: 10.2337/dc08-0039
  • 17 Wild R, Weedin EA, Wilson D. Dyslipidemia in Pregnancy. Endocrinol Metab Clin North Am 2016; 45 (01) 55-63 . Doi: 10.1016/j.ecl.2015.09.004
  • 18 Meyer BJ, Stewart FM, Brown EA. , et al. Maternal obesity is associated with the formation of small dense LDL and hypoadiponectinemia in the third trimester. J Clin Endocrinol Metab 2013; 98 (02) 643-652 . Doi: 10.1210/jc.2012-3481
  • 19 O'Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 2003; 14 (03) 368-374
  • 20 Barter PJ, Ballantyne CM, Carmena R. , et al. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J Intern Med 2006; 259 (03) 247-258 . Doi: 10.1111/j.1365-2796.2006.01616.x
  • 21 Pencina MJ, D'Agostino RB, Zdrojewski T. , et al. Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. Eur J Prev Cardiol 2015; 22 (10) 1321-1327 . Doi: 10.1177/2047487315569411
  • 22 Forti N, Diament J. [Apolipoprotein B and A-I: cardiovascular risk factor?]. Rev Assoc Med Bras (1992) 2007; 53 (03) 276-282 . Doi: 10.1590/S0104-42302007000300029
  • 23 Kaneva AM, Potolitsyna NN, Bojko ER, Odland JØ. The apolipoprotein B/apolipoprotein A-I ratio as a potential marker of plasma atherogenicity. Dis Markers 2015; 2015: 591454
  • 24 Thompson A, Danesh J. Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of prospective studies. J Intern Med 2006; 259 (05) 481-492 . Doi: 10.1111/j.1365-2796.2006.01644.x
  • 25 Tastet L, Capoulade R, Shen M. , et al. Apolipoprotein B/apolipoprotein A-I ratio and progression of aortic valve stenosis - Results from the PROGRESSA Study. Circulation 2015; 132: A18449
  • 26 Bounafaa A, Berrougui H, Ikhlef S. , et al. Alteration of HDL functionality and PON1 activities in acute coronary syndrome patients. Clin Biochem 2014; 47 (18) 318-325 . Doi: 10.1016/j.clinbiochem.2014.09.001
  • 27 Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014; 384 (9943): 618-625 . Doi: 10.1016/S0140-6736(14)61217-4
  • 28 Kontush A. HDL particle number and size as predictors of cardiovascular disease. Front Pharmacol 2015; 6: 218 . Doi: 10.3389/fphar.2015.00218
  • 29 Gelisgen R, Genc H, Kayali R. , et al. Protein oxidation markers in women with and without gestational diabetes mellitus: a possible relation with paraoxonase activity. Diabetes Res Clin Pract 2011; 94 (03) 404-409 . Doi: 10.1016/j.diabres.2011.08.001
  • 30 Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 1996; 7 (02) 69-76 . Doi: 10.1097/00041433-199604000-00004
  • 31 Aviram M, Vaya J. Paraoxonase 1 activities, regulation, and interactions with atherosclerotic lesion. Curr Opin Lipidol 2013; 24 (04) 339-344 . Doi: 10.1097/MOL.0b013e32835ffcfd
  • 32 Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 2010; 21 (04) 312-318 . Doi: 10.1097/MOL.0b013e32833bcdc1
  • 33 Clausen TD, Mathiesen ER, Hansen T. , et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab 2009; 94 (07) 2464-2470 . Doi: 10.1210/jc.2009-0305
  • 34 Belo L, Caslake M, Gaffney D. , et al. Changes in LDL size and HDL concentration in normal and preeclamptic pregnancies. Atherosclerosis 2002; 162 (02) 425-432 . Doi: 10.1016/S0021-9150(01)00734-1
  • 35 Stefanović A, Ardalic D, Kotur-Stevuljević J. , et al. Longitudinal changes in PON1 activities, PON1 phenotype distribution and oxidative status throughout normal pregnancy. Reprod Toxicol 2012; 33 (01) 20-26 . Doi: 10.1016/j.reprotox.2011.10.009
  • 36 Catalano PM. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J Dev Orig Health Dis 2010; 1 (04) 208-215 . Doi: 10.1017/S2040174410000115
  • 37 King JC. Maternal obesity, metabolism, and pregnancy outcomes. Annu Rev Nutr 2006; 26: 271-291 . Doi: 10.1146/annurev.nutr.24.012003.132249
  • 38 Sánchez-Vera I, Bonet B, Viana M. , et al. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metabolism 2007; 56 (11) 1527-1533 . Doi: 10.1016/j.metabol.2007.06.020
  • 39 Niromanesh S, Shirazi M, Dastgerdy E, Sharbaf FR, Shirazi M, Khazaeipour Z. Association of hypertriglyceridaemia with pre-eclampsia, preterm birth, gestational diabetes and uterine artery pulsatility index. Natl Med J India 2012; 25 (05) 265-267
  • 40 Vrijkotte TGM, Krukziener N, Hutten BA, Vollebregt KC, van Eijsden M, Twickler MB. Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: the ABCD study. J Clin Endocrinol Metab 2012; 97 (11) 3917-3925 . Doi: 10.1210/jc.2012-1295
  • 41 Catov JM, Ness RB, Wellons MF, Jacobs DR, Roberts JM, Gunderson EP. Prepregnancy lipids related to preterm birth risk: the coronary artery risk development in young adults study. J Clin Endocrinol Metab 2010; 95 (08) 3711-3718 . Doi: 10.1210/jc.2009-2028
  • 42 Nederlof M, de Walle HEK, van Poppel MNM, Vrijkotte TGM, Gademan MGJ. Deviant early pregnancy maternal triglyceride levels and increased risk of congenital anomalies: a prospective community-based cohort study. BJOG 2015; 122 (09) 1176-1183 . Doi: 10.1111/1471-0528.13393
  • 43 Smedts HPM, van Uitert EM, Valkenburg O. , et al. A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring. Nutr Metab Cardiovasc Dis 2012; 22 (06) 477-485 . Doi: 10.1016/j.numecd.2010.07.016
  • 44 Gupta S, Arora S, Trivedi SS, Singh R. Dyslipidemia in pregnancy may contribute to increased risk of neural tube defects -a pilot study in north Indian population. Indian J Clin Biochem 2009; 24 (02) 150-154 . Doi: 10.1007/s12291-009-0027-9
  • 45 Han ES, Krauss RM, Xu F. , et al. Prepregnancy adverse lipid profile and subsequent risk of gestational diabetes. J Clin Endocrinol Metab 2016; 101 (07) 2721-2727 . Doi: 10.1210/jc.2015-3904
  • 46 Catov JM, Bodnar LM, Kip KE. , et al. Early pregnancy lipid concentrations and spontaneous preterm birth. Am J Obstet Gynecol 2007; 197 (06) 610.e1-610.e7 . Doi: 10.1016/j.ajog.2007.04.024
  • 47 Chen X, Scholl TO. Maternal biomarkers of endothelial dysfunction and preterm delivery. PLoS One 2014; 9 (01) e85716 . Doi: 10.1371/journal.pone.0085716
  • 48 Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 2001; 357 (9273): 2002-2006 . Doi: 10.1016/S0140-6736(00)05112-6
  • 49 Ray CD, Shenoy JV, Hare AA. Pre-eclampsia and hyponatraemia. J Obstet Gynaecol 2006; 26 (07) 695-696 . Doi: 10.1080/01443610600929953
  • 50 Jin WY, Lin SL, Hou RL. , et al. Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: a population-based study from China. BMC Pregnancy Childbirth 2016; 16: 60 . Doi: 10.1186/s12884-016-0852-9
  • 51 El Khouly NI, Sanad ZF, Saleh SA, Shabana AA, Elhalaby AF, Badr EE. Value of first-trimester serum lipid profile in early prediction of preeclampsia and its severity: A prospective cohort study. Hypertens Pregnancy 2016; 35 (01) 73-81 . Doi: 10.3109/10641955.2015.1115060
  • 52 Genc H, Uzun H, Benian A. , et al. Evaluation of oxidative stress markers in first trimester for assessment of preeclampsia risk. Arch Gynecol Obstet 2011; 284 (06) 1367-1373 . Doi: 10.1007/s00404-011-1865-2
  • 53 Demir B, Demir S, Atamer Y. , et al. Serum levels of lipids, lipoproteins and paraoxonase activity in pre-eclampsia. J Int Med Res 2011; 39 (04) 1427-1431 . Doi: 10.1177/147323001103900430
  • 54 Baumfeld Y, Novack L, Wiznitzer A. , et al. Pre-conception dyslipidemia is associated with development of preeclampsia and gestational Diabetes Mellitus. PLoS One 2015; 10 (10) e0139164 . Doi: 10.1371/journal.pone.0139164
  • 55 Bryson CL, Ioannou GN, Rulyak SJ, Critchlow C. Association between gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol 2003; 158 (12) 1148-1153 . Doi: 10.1093/aje/kwg273
  • 56 Ogura K, Miyatake T, Fukui O, Nakamura T, Kameda T, Yoshino G. Low-density lipoprotein particle diameter in normal pregnancy and preeclampsia. J Atheroscler Thromb 2002; 9 (01) 42-47
  • 57 Enquobahrie DA, Williams MA, Butler CL, Frederick IO, Miller RS, Luthy DA. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am J Hypertens 2004; 17 (07) 574-581 . Doi: 10.1016/j.amjhyper.2004.03.666
  • 58 Gratacós E, Casals E, Gómez O. , et al. Increased susceptibility to low density lipoprotein oxidation in women with a history of pre-eclampsia. BJOG 2003; 110 (04) 400-404 . Doi: 10.1046/j.1471-0528.2003.02349.x
  • 59 Sattar N, Gaw A, Packard CJ, Greer IA. Potential pathogenic roles of aberrant lipoprotein and fatty acid metabolism in pre-eclampsia. Br J Obstet Gynaecol 1996; 103 (07) 614-620 . Doi: 10.1111/j.1471-0528.1996.tb09827.x
  • 60 Duarte-Mote J, Perez-Torres C, Espinosa-López R. , et al. [Relationship between dyslipidemia and severity in preeclampsia]. Rev Med Inst Mex Seguro Soc 2014; 52 (05) 516-520