Thromb Haemost 1992; 68(04): 448-454
DOI: 10.1055/s-0038-1646295
Original Article
Schattauer GmbH Stuttgart

Mutations in Severe, Type III von Willebrand’s Disease in the Dutch Population: Candidate Missense and Nonsense Mutations Associated with Reduced Levels of von Willebrand Factor Messenger RNA

Jeroen C J Eikenboom
The Department of Hematology, Hemostasis and Thrombosis Research Unit, University Hospital Leiden, Leiden, The Netherlands
,
Hans K Ploos van Amstel
The Department of Hematology, Hemostasis and Thrombosis Research Unit, University Hospital Leiden, Leiden, The Netherlands
,
Pieter H Reitsma
The Department of Hematology, Hemostasis and Thrombosis Research Unit, University Hospital Leiden, Leiden, The Netherlands
,
Ernest Briët
The Department of Hematology, Hemostasis and Thrombosis Research Unit, University Hospital Leiden, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 24 January 1992

Accepted after revision 13 May 1992

Publication Date:
04 July 2018 (online)

Summary

The von Willebrand factor (vWF) genes of nine unrelated, severe, type III von Willebrand’s disease (vWD) patients (six of Dutch origin) and four unrelated Dutch type I vWD patients were screened for mutations in exons that contain CGA codons (Arg), which are liable to mutation to TGA stop codons. The nine exons of the vWF gene (3, 8, 9, 10, 28, 31, 32, 43 and 45) that contain all the CGA codons (11 in total) of the vWF cDNA were amplified by the polymerase chain reaction and screened for mutations by single-strand conformation polymorphism analysis, restriction enzyme – and/or nucleotide sequence analysis. Three of the severe vWD patients were found to be heterozygous for a nonsense mutation: CGA Arg 2535 → TGA Stop. Three other severe vWD patients were homozygous for a single nucleotide substitution, AAC Asn 2546 → TAC Tyr. The transcription of these mutated alleles was tested by cDNA dependent amplification of platelet RNA. The level of transcription product was strongly reduced for either mutant allele.

 
  • REFERENCES

  • 1 Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand’s disease. Blood 1987; 69: 454-459
  • 2 Miller CH, Graham JB, Goldin LR, Elston RC. Genetics of classic von Willebrand’s disease. I. Phenotypic variation within families. Blood 1979; 54: 117-136
  • 3 Ruggeri ZM, Zimmerman TS. Von Willebrand factor and von Willebrand disease. Blood 1987; 70: 895-904
  • 4 Tuddenham EGD. Von Willebrand factor and its disorders: an overview of recent molecular studies. Blood Rev 1989; 3: 251-262
  • 5 Mancuso DJ, Tuley EA, Westfield LA, Worrall NK, Shelton-Inloes BB, Sorace JM, Alevy YG, Sadler JE. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264: 19514-19527
  • 6 Mancuso DJ, Tuley EA, Westfield LA, Lester-Mancuso TL, Le Beau MM, Sorace JM, Sadler JE. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry 1991; 30: 253-269
  • 7 Sadler JE. Von Willebrand factor. J Biol Chem 1991; 266: 22777-22780
  • 8 Shelton-Inloes BB, Chehab FF, Mannucci PM, Federici AB, Sadler JE. Gene deletions correlate with the development of alloantibodies in von Willebrand disease. J Clin Invest 1987; 79: 1459-1465
  • 9 Ngo KY, Trifard Glotz V, Koziol JA, Lynch DC, Gitschier J, Ranieri P, Ciavarella N, Ruggeri ZM, Zimmerman TS. Homozygous and heterozygous deletions of the von Willebrand factor gene in patients and carriers of severe von Willebrand disease. Proc Natl Acad Sci USA 1988; 85: 2753-2757
  • 10 Peake IR, Liddell MB, Moodie P, Standen G, Mancuso DJ, Tuley EA, Westfield LA, Sorace JM, Sadler JE, Verweij CL, Bloom AL. Severe type III von Willebrand’s disease caused by deletion of exon 42 of the von Willebrand factor gene: family studies that identify carriers of the condition and a compound heterozygous individual. Blood 1990; 75: 654-661
  • 11 Nichols WC, Lyons SE, Harrison JS, Cody RL, Ginsburg D. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: detection by exonic PCR-restriction fragment length polymorphism analysis. Proc Natl Acad Sci USA 1991; 88: 3857-3861
  • 12 Lavergne JM, Bahnak BR, Rotschild C, Meyer D. Nonsense codon within von Willebrand antigen II in a patient with severe, type III, von Willebrand disease. Br J Haematol 1991; 77: 42
  • 13 Dent JA, Berkowitz SD, Ware J, Kasper CK, Ruggeri ZM. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci USA 1990; 87: 6306-6310
  • 14 Cooper DN, Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet 1990; 85: 55-74
  • 15 Koster T, Caekebeke-Peerlinck KMJ, Briët E. A randomized and blinded comparison of the sensitivity and the reproducibility of the Ivy and Simplate® bleeding time techniques. Am J Clin Pathol. 1989; 92: 315-320
  • 16 Veltkamp JJ, Drion EF, Loeliger EA. Detection of carrier state in hereditary coagulation disorders. I. Thromb Diath Haemorrh 1968; 19: 279-303
  • 17 Silveira AMV, Yamamoto T, Adamson L, Hessel B, Blombäck B. Application of an enzyme-linked immunosorbent assay (ELISA) to von Willebrand factor (vWF) and its derivatives. Thromb Res 1986; 43: 091-102
  • 18 Gralnick HR, Coller BS, Sultan Y. Studies of the human factor VIII/von Willebrand factor protein. III. Qualitative defects in von Willebrand’s disease. J Clin Invest 1975; 56: 814-827
  • 19 Peake IR, Bowen D, Bignell P, Liddell MB, Sadler JE, Standen G, Bloom AL. Family studies and prenatal diagnosis in severe von Willebrand disease by polymerase chain reaction amplification of a variable number tandem repeat region of the von Willebrand factor gene. Blood 1990; 76: 555-561
  • 20 Ploos van Amstel HK, Reitsma PH. Tetranucleotide repeat polymorphism in the vWF gene. Nucleic Acids Res 1990; 18: 4957
  • 21 Caekebeke-Peerlinck KMJ, Bakker E, Briët E. An infrequent DNA polymorphism associated with severe von Willebrand’s disease. Br J Haematol 1990; 75: 78-81
  • 22 Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-491
  • 23 Ploos van Amstel HK, Zanden van der AL, Reitsma PH, Bertina RM. Human protein S cDNA encodes Phe-16 and Tyr-222 in consensus sequences for the post-translational processing. FEBS Lett 1987; 222: 186-190
  • 24 Kunkel GR, Graham JB, Fowlkes DM, Lord ST. Rsal polymorphism in von Willebrand factor (vWF) at codon 789. Nucleic Acids Res 1990; 18: 4961
  • 25 Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1986; 86: 2766-2770
  • 26 Sambrook J, Fritsch EF, Maniatis T. Isolation of cytoplasmic RNA from mammalian cells. In: Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York: 1989. pp 7.12-7.15
  • 27 Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K. Amino acid sequence of human von Willebrand factor. Biochemistry 1986; 25: 3171-3184
  • 28 Ploos van Amstel HK, Diepstraten CM, Reitsma PH, Bertina RM. Analysis of platelet protein S mRNA suggests silent alleles as a frequent cause of hereditary protein S deficiency type I. Thromb Haemostas 1991; 65: 808
  • 29 Kinniburgh AJ, Maquat LE, Schedl T, Rachmilewitz E, Ross J. mRNA-deficient β°-thalassemia results from a single nucleotide deletion. Nucleic Acids Res 1982; 10: 5241-5247
  • 30 Takeshita K, Forget BG, Scarpa A, Benz EJ. Intranuclear defect in β-globin mRNA accumulation due to a premature translation termination codon. Blood 1984; 64: 13-22
  • 31 Humphries RK, Ley TJ, Anagnou NP, Baur AW, Nienhus AW. β°-39 Thalassemia gene: a premature termination codon causes β-mRNA deficiency without affecting cytoplastmic β-mRNA stability. Blood 1984; 64: 23-32
  • 32 Atweh GF, Brickner HE, Zhu XX, Kazazian HH, Forget BG. New amber mutation in a β-thalassemic gene with nonmeasurable levels of mutant messenger RNA in vivo. J Clin Invest 1988; 82: 557-561
  • 33 Baserga SJ, Benz EJ. Nonsense mutations in the human β-globin gene affect mRNA metabolism. Proc Natl Acad Sci USA 1988; 85: 2056-2060
  • 34 Urlaub G, Mitchell PJ, Ciudad CJ, Chasin LA. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol 1989; 9: 2868-2880
  • 35 Lirn S-K, Sigmund CD, Gross KW, Maquat LE. Nonsense codons in human β-globin mRNA result in the production of mRNA degradation products. Mol Cell Biol 1992; 12: 1149-1161
  • 36 Ewenstein BM, Inbal A, Pober JS, Handin RI. Molecular studies of von Willebrand disease: reduced von Willebrand factor biosynthesis, storage, and release in endothelial cells derived from patients with type I von Willebrand disease. Blood 1990; 75: 1466-1472