Thromb Haemost 1992; 68(06): 719-726
DOI: 10.1055/s-0038-1646350
Original Article
Schattauer GmbH Stuttgart

Arachidonate Transfer Between Platelets and Lipoproteins

Ingrid I Surya
The Department of Haematology, University Hospital Utrecht, Utrecht, The Netherlands
,
Gertie Gorter
The Department of Haematology, University Hospital Utrecht, Utrecht, The Netherlands
,
Jan Willem N Akkerman
The Department of Haematology, University Hospital Utrecht, Utrecht, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 03 April 1992

Accepted after revision 24 July 1992

Publication Date:
04 July 2018 (online)

Summary

Although platelets have specific bindingsites for LDL and HDL, it is doubtful whether lipoproteins modulate platelet functions via receptor-mediated processes. We investigated platelet-lipoprotein interaction during prolonged incubation with concentrations of LDL and HDL that saturate the bindingsites within a few minutes. When [3H]arachidonate-labeled human platelets were incubated for 4 h with lipoproteins, part of the 3H-radioactivity transferred to LDL and to a lesser extent to HDL. The transfer was temperature-sensitive, unaffected by modification of lysine in LDL or indomethacin treatment of the platelets, and almost irreversible. [3H]arachidonate transfer to lipoproteins could be mimicked by incubating platelets with a high concentration of fatty acid free albumin. This showed, that the loss of 3H-radioactivity reflected a decrease in endogenous arachidonate, leading to impaired aggregation, secretion and thromboxane B2 formation in platelets after stimulation with thrombin but not with arachidonate. Thus, the decrease in platelet functions seen after long incubation with HDL is caused by depletion of platelet arachidonate. Despite an even stronger arachidonate depletion by LDL, this lipoprotein initiated arachidonate metabolism and secretion independent of specific binding sites for LDL on the platelet. Surprisingly, the major part of the secretion was preserved when the formation of prostaglandin endoperoxides/ thromboxane A2 was inhibited with indomethacin. These findings argue against a role for LDL and HDL receptors in the modulation of platelet functions and are more in favor of lipid exchange processes between platelets and lipoproteins.

 
  • REFERENCES

  • 1 Hassal DG, Owen JS, Bruckdorfer KR. The aggregation of isolated platelets in the presence of lipoproteins and prostacyclin. Biochem J 1983; 216: 43-49
  • 2 Aviram M, Brook JG. The effect of blood constituents on platelet function: role of blood cells and plasma lipoproteins. Artery 1983; 11: 297-305
  • 3 Aviram M, Brook JG. Selective release from platelet granules induced by plasma lipoproteins. Biochem Med 1984; 32: 30-33
  • 4 Andrews HE, Aitken JW, Hassall DG, Skinner VO, Bruckdorfer KR. Intracellular mechanisms in the activation of human platelets by low density lipoproteins. Biochem J 1987; 242: 559-564
  • 5 Aviram M, Sirtori CR, Colli S, Maderna P, Morazzoni P, Tremoli E. Plasma lipoproteins affect platelet malondialdehyde and thromboxane B2 production. Biochem Med 1985; 34: 29-34
  • 6 Bruckdorfer KR. The effects of plasma lipoproteins on platelet responsiveness and on platelet and vascular prostanoid synthesis. Prostaglandins, Leukotrienes Essential Fatty Acids Rev 1989; 38: 247-254
  • 7 Pletscher A, Ferracin F, Block H. HDL, a partial agonist of platelet activation?. Thromb Res 1990; 60: 431-432
  • 8 Nordoy A, Refsum N, Thelle D, Jeger S. Platelet function and serum high density lipoproteins. Thromb Haemostas 1979; 42: 1181-1185
  • 9 Desai K, Bruckdorfer KR, Hutton RA, Owen SO. Binding of apo E-rich high density lipoprotein particles by saturable sites on human blood platelets inhibits agonist-induced platelet aggregation. J Lipid Res 1989; 30: 831-840
  • 10 Higashihara M, Kinoshita K, Kume S, Teramoto T, Kurokawa K. Inhibition of platelet function by high-density lipoprotein from a patient with apolipoprotein E deficiency. Biochem Biophys Res Commun 1991; 181: 1331-1336
  • 11 Curtiss LK, Plow EF. Interaction of plasma lipoproteins with human platelets. Blood 1984; 64: 365-374
  • 12 Aviram M, Brook JG, Lees AM, Lees RS. Low density lipoprotein binding to human platelets: role of charge and of specific amino acids. Biochem Biophys Res Comm 1981; 99: 308-318
  • 13 Shmulevitz A, Brook JG, Aviram M. Native and modified low density lipoprotein interactions with human platelets in normal and homozygous familial hypercholesterolaemic subjects. Biochem J 1984; 224: 13-20
  • 14 Hassal DG, Desai K, Owen JS, Bruckdorfer KR. Detection of a protein in human platelet membranes which binds low-density lipoproteins. Platelets 1990; 1: 29-35
  • 15 Koller E, Koller F, Doleschel W. Specific binding sites on human blood platelets for plasma lipoproteins. Hoppe-Seyler’s Z Physiol Chem 1982; 363: 395-405
  • 16 Mazurov AV, Preobrazhensky SN, Leytin VL, Repin VS, Smirnov VN. Study of low density lipoproteins interaction with platelets by flow cytofluometry. FEBS Lett 1982; 137: 319-322
  • 17 Surya II, Gorter G, Mommersteeg M, Akkerman JWN. Enhancement of platelet functions by low density lipoproteins. Biochim Biophys Acta, in press
  • 18 Philips MC, Johnson WJ, Rothblat GH. Mechanism and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 1987; 906: 223-276
  • 19 Illingworth DR, Portman OW, Robertson AL, Magyar WA. The exchange of phospholipids between plasma lipoproteins and rapidly dividing human cells grown in tissue culture. Biochim Biophys Acta 1973; 306: 422-436
  • 20 Habenicht AJR, Salbach P, Goerig M, Zeh W, Janssen-Timmen U, Blattner C, King WC, Clomset JA. The LDL receptor pathway delivers arachidonic acid for eicosanoid formation in cells stimulated by platelet-derived growth factor. Nature 1990; 345: 634-636
  • 21 Purdon AD, Patelunas D, Smith JB. Resolution of radiolabeled molecular species of phospholipid in human platelets: effect of thrombin. Lipids 1987; 22: 116-120
  • 22 Nordoy A. Plasma and platelet lipids in man. Haemostasis 1973; 1974; 2: 103-117
  • 23 Kroll MH, Schafer AI. Biochemical mechanisms of platelet activation. Blood 1989; 74: 1181-1195
  • 24 Mills GL, Lane PA, Weèch PK. A Guidebook to Lipoprotein Technique. Laboratory Techniques in Biochemistry and Molecular Biology. Volume 14. Burdon RH, van Knippenberg PH. (eds) Elsevier, Amsterdam: 1984: 018-114
  • 25 Graaf de J, Hak-Lemmers MPC, Demacker PNM, Hendriks JCM, Stalenhoef AFH. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscl Thromb 1991; 11: 298-306
  • 26 Sturk A, Janssen ME, Muylaert FR, Joop K, Thomas LLM, ten Cate JW. Endotoxin testing in blood. Prog Clin Res 1987; 231: 371-385
  • 27 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-275
  • 28 Weisgraber KH, Innerarity TL, Mahley RW. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem 1978; 253: 9053-9062
  • 29 Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911-918
  • 30 Hong SCL, Levine L. Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosterids. Proc Natl Acad Sci USA 1976; 73: 1730-1734
  • 31 Feinman RD, Lubowsky L, Charo IF, Zabinsky MP. The lumiag-gregometer. A new instrument for simultaneous measurement of secretion and aggregation. J Lab Clin Med 1977; 90: 125-129
  • 32 Chambaz J, Bereziat G, Pepin D, Polonovski J. Turnover of platelet arachidonic and linoleic acids. Biochemie 1979; 61: 127-130
  • 33 Shafir E, Gattm S, Khasis S. Partition of fatty acids of 20–24 carbon atoms between serum albumin and lipoproteins. Biochim Biophys Acta 1965; 98: 365-371
  • 34 Malone B, Lee T, Snijder F. Inactivation of platelet activating factor by rabbit platelets. J Biol Chem 1985; 260: 1531-1534
  • 35 Chignard M, Le Couedic J, Coëffier E, Benveniste J. PAF-acether formation and arachidonic acid freeing from platelet ether-linked glyceryl-phosphorylcholine. Biochem Biophys Res Commun 1984; 124: 637-643
  • 36 Willigen van G, Gorter G, Akkerman JWN. Purified low density lipoproteins increase the exposure of fibrinogen binding sites following stimulation with ADP Circulation 84:. II – 28 (abstract)
  • 37 Bereziat G, Chambaz J, Trugnan G, Pepin D, Polonovski J. Turnover of phospholipid linoleic and arachidonic acids in human platelets from plasma lecithins. J Lipid Res 1978; 19: 495-500
  • 38 Joist JH, Dolezel G, Lloyd JV, Mustard JF. Phospholipid transfer between plasma and platelets in vitro. Blood 1976; 48: 199-211
  • 39 Berry EM. The effects of nutrients on lipoprotein susceptibility to oxidation. Current opinion in lipidology 1992; 3: 05-11
  • 40 Schick BP, Schick PK. Cholesterol exchange in platelets, erythrocytes and megakaryocytes. Biochim Biophys Acta 1985; 833: 281-290
  • 41 Philips MC, Johnson WJ, Rothblat GH. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 1987; 906: 223-276
  • 42 Johnson WJ, Mahlberg FH, Chacko GK, Philips MC, Rothblat GH. The influence of cellular and lipoprotein cholesterol contents on the flux of cholesterol between fibroblasts and high density lipoprotein. J Biol Chem 1988; 263: 14099-14106
  • 43 Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Wirtz JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci 1989; 86: 1372-1376
  • 44 Heinecke JW. Free radical modification of low density lipoprotein: mechanisms and biological consequences. Free Radical Biol Med 1987; 3: 65-73
  • 45 Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of LDL that increase its atherogenicity. New Engl J Med 1989; 320: 915-924
  • 46 Oishi K, Raynor RL, Charp PA, Kuo JF. Regulation of protein kinase C by lysophospholipids. J Biol Chem 1988; 262: 6865-6871
  • 47 Ardlie NG, Selley ML, Simons LA. Platelet activation by oxidatively modified low density lipoproteins. Atherosclerosis 1989; 76: 117-124
  • 48 Liao F, Berliner JA, Mehrabian M, Navab M, Demer LL, Lusis AJ, Fogelman AM. Minimally modified LDL is biologically active in vivo in mice. J Clin Invest 1991; 87: 2253-2257
  • 49 Parthasarathy S, Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci 1990; 87: 9741-9745