Thromb Haemost 1988; 60(02): 178-181
DOI: 10.1055/s-0038-1647025
Original Article
Schattauer GmbH Stuttgart

Carrier Detection in Severe (Type III) von Willebrand Disease Using Two Intragenic Restriction Fragment Length Polymorphisms

B R Bahnak
INSERM U.143, Hôpital de Bicêtre, Paris, France, The Netherlands
,
J M Lavergne
INSERM U.143, Hôpital de Bicêtre, Paris, France, The Netherlands
,
C L Verweij
1   Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands
2   Current address: Stanford University, School of Medicine, Stanford, CA 94305, USA
,
C Rothschild
1   Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands
,
H Pannekoek
1   Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands
,
M J Larrieu
INSERM U.143, Hôpital de Bicêtre, Paris, France, The Netherlands
,
D Meyer
INSERM U.143, Hôpital de Bicêtre, Paris, France, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 08 March 1988

Accepted after revision 16 May 1988

Publication Date:
23 July 2018 (online)

Summary

DNA from a family with a female member affected with severe (type III) vWD was analysed using three restriction enzymes and a partial vWF cDNA probe. Two restriction fragment length polymorphisms (RFLPs) detected with the enzymes Bgl II and Xba I proved to be informative in this family. A 36.0 Kb allele, demonstrated with the enzyme Xba I was rare in the general population but very important in this family for segregation analysis of the alleles and their association with the putative defective chromosome. The propositus was homozygous for the 36.0 Kb Xba I polymorphic band and heterozygous for the Bgl II polymorphism. She was the only member of the family showing this allelic pattern. The linkage of the alleles could be determined because her mother was homozygous for the 9.0 Kb Bgl II polymorphism but heterozygous for the Xba I polymorphism. The segregation of the alleles could be traced to the proband’s son and a niece. The genotypic analysis revealed that her niece could be considered as carrying a defective gene for severe vWD.

 
  • References

  • 1 Girina JP, Meyer D, Verweij CL, Pannekoek H, Sixma JJ. Structure-function relationship of hiiman von Willebrand factor. Blood 1987; 70: 605-611
  • 2 Weiss HJ, Sussman II, Hoyer LW. Stabilization of the factor VIII in plasma by the von Willebrand factor. J Clin Invest 1977; 60: 390-404
  • 3 Ruggeri ZM, Zimmerman TS. von Willebrand factor and von Willebrand disease. Blood 1987; 70: 895-904
  • 4 Shoa’i I, Lavergne JM, Ardaillou N, Obert B, Ala F, Meyer D. Heterogeneity of von Willebrand’s disease: studies of 40 Iranian cases. Br J Haematol 1977; 37: 67-83
  • 5 Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns GAP, Latt SA, Orkin SH. Human von Willebrand factor (vWF): Isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 1985; 228: 1401-1406
  • 6 Verweij CL, de Vries CJ M, Distel B, van Zonnevel AJ, Geurts van Kessel A, van Mourik JA, Pannekoek H. Construction of cDNA coding for human von Willebrand factor using antibody probes for colony screening and mapping of the chromosomal gene. Nucleic Acids Res 1985; 13: 4699-4717
  • 7 Sadler JE, Shelton-Inloes BB, Sorace JM, Harlan JM, Titani K, Davie EW. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci USA 1985; 82: 6394-6398
  • 8 Lynch DC, Zimmerman TS, Collins CJ, Brown M, Ling EH, Livingston DM. Molecular cloning of cDNA for human von Willebrand factor: Authentification by a new method. Cell 1985; 41: 49-56
  • 9 Shelton-Inloes BB, Chelab FF, Mannucci PM, Federici AB, Sadler JE. Gene deletions correlate with the development of alloantibodies in von Willebrand disease. J Clin Invest 1987; 79: 1459-1465
  • 10 Ngo KY, Lynch DC, Gitscher J, Ciavarella N, Ruggeri ZM, Zimmerman TS. Gene deletions in four patients from the same kindred with severe von Willebrand disease and anti-von Willebrand factor antibodies. Blood 1986; (Suppl) 68: 339a
  • 11 Ngo KY, Lynch DC, Gitschier J, Ciavarella N, Ruggeri ZM, Zimmerman TS. Homozygous and heterozygous deletions of the von Willebrand factor gene coding region in severe von Willebrand disease. Thromb Haemostas 1987; 58: 311 (Abstr)
  • 12 Bernardi F, Guerra S, Patracchini P, Volina S, Buzzoni D, Ballerini G, Casonato A, Marchetti G. Von Willebrand disease investigated by two novel RFLPS. Br J Haematol 1988; 68: 243-248
  • 13 Verweij CJ, Hofker M, Quadt R, Briet E, Pannekoek H. RFLP for a human von Willebrand factor (vWF) cDNA clone, pvWF1100. Nucleic Acids Res 1985; 13: 8289
  • 14 Quadt R, Verweij CL, de Vries CJ M, Briet E, Pannekoek H. A polymorphic Xba I site within the human von Willebrand factor (vWF) gene identified by a vWF cDNA clone. Nucleic Acid Res 1986; 14: 7139
  • 15 Nishino K, Lynch DC. A polymorphism of the human von Willebrand factor (vWF) gene with Bam HI. Nucleic Acids Res 1986; 14: 4697
  • 16 Bernardi F, Marchetti G, Bertagnolo V, Faggioli L, del Senno L. Two Taq I RFLPS in the human von Willebrand factor gene. Nucleic Acids Res 1987; 15: 1347
  • 17 Iannuzzi MC, Konkle BA, Ginsburg D, Collins FS. Rsa I RFLP in the human von Willebrand factor gene. Nucleic Acids Res 1987; 15: 5909
  • 18 Konkle BA, Kim S, Ianuzzi MC, Alani R, Collins FS, Ginsburg D. Sac I RFLP in the human von Willebrand factor gene. Nucleic Acids Res 1987; 15: 6766
  • 19 Lavergne JM, Bahnak BR, Verweij CL, Pannekoek H, Meyer D. A second Xba I polymorphic site within the human von Willebrand factor (vWF) gene. Nucleic Acids Res 1987; 15: 9099
  • 20 Verweij CL, Quadt R, Briet E, Dubbeldam K, van Ommen G-JB, Pannekoek H. Genetic linkage of two intragenic restriction fragment length polymorphisms with von Willebrand’s disease type IIa: evidence for defect in the von Willebrand factor gene. J Clin Invest 1988; 81: 1116-1121
  • 21 Veltkamp JJ, von Tilburg NH. Detection of heterozygotes for recessive von Willebrand’s disease by the assay of antihemophilic-factor-like antigen. New Engl J Med 1973; 289: 882-915
  • 22 Mielke CH, Kaneshiro MM, Maher IA, Weiner JM, Rapaport SI. The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 1969; 34: 204-215
  • 23 Meyer D, Obert B, Pietu G, Lavergne JM, Zimmerman TS. Multimeric structure of factor VHI/von Willebrand factor in von Willebrand’s disease. J Lab Clin Med 1980; 95: 590-602
  • 24 Girma JP, Ardaillou N, Meyer D, Lavergne JM, Larrieu MJ. Fluidphase immunoradiomeric assay for the detection of qualitative abnormalities of factor VHI/von Willebrand factor in variants of von Willebrand’s disease. J Lab Clin Med 1979; 93: 926-939
  • 25 Rosing J, van Rijn JL M L, Bevers EM, van Dieijen G, Comfurius P, Zwall RF A. The role of activated platelets in prothrombin and factor X activation. Blood 1985; 65: 319-332
  • 26 Grunebaum L, Cazenave JP, Camerino G, Kloepfer C, Mandel JL, Tolstoshev P, Jaye M, de la Salle H, Lecocq JP. Carrier detection of hemophilia B by using restriction site polymorphism associated with the coagulation factor IX gene. J Clin Invest 1984; 73: 1491-1495
  • 27 Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, USA: 1982: 150-162
  • 28 Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503-518
  • 29 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69: 1691-1695