Thromb Haemost 1973; 29(01): 135-142
DOI: 10.1055/s-0038-1647754
Original Article
Schattauer GmbH

A Fibrinolytic Agent from a Saturnid Caterpillar Partial Purification and Characterization

C. L Arocha-Pinango*
1   Department of Haematology, St. Thomas’ Hospital, London, and the Departments of Physiology, and Biochemistry, Queen Elizabeth College, Campden Hill Road, London
,
N. A Marsh
1   Department of Haematology, St. Thomas’ Hospital, London, and the Departments of Physiology, and Biochemistry, Queen Elizabeth College, Campden Hill Road, London
,
D Robinson
1   Department of Haematology, St. Thomas’ Hospital, London, and the Departments of Physiology, and Biochemistry, Queen Elizabeth College, Campden Hill Road, London
› Author Affiliations
Further Information

Publication History

Received 25 March 1972

Publication Date:
30 June 2018 (online)

Summary

Purification and characterization studies were performed on a proteolytic agent obtained from a Saturnid moth caterpillar. Starting material possessed caseinolytic, fibrinolytic and plasminogen-activator activities. The fibrinolytic activity was stable over a wide range of pH and temperature. Purification was performed by molecular exclusion chromatography and ion exchange chromatography. A pH- and heat-stable material was obtained having a molecular weight in the range of 16,000-18,000. This material did not possess the ability to activate human plasminogen but retained direct caseinolytic and fibrinolytic activities. It had no effect on thrombin- and arvin- clotting times of human plasma, on partial thromboplastin time or on the whole blood thrombin generation test. Electrophoresis on cellulose acetate agar gel and polyacrylamide showed the material to be very basic and moving away from any detectable protein. The isoelectric point was found to be greater than pH 10. The relationship between the characterized material and the clinical syndrome caused by contact with the caterpillar remains to be determined.

* Present address: Institute Venezolano de Investigaciones Oientificas, Apartado 1827, Caracas, Venezuela.


 
  • References

  • 1 Alkjaersig N, Fletcher A. P, Sherry S. 1959; The mechanisms of clot dissolution by plasmin. Journal of Clinical Investigation 38: 1086.
  • 2 Andrews P. 1967; Molecular sieve chromatography applied to molecular size and molecular weight estimation. Laboratory Practice 16: 851.
  • 3 Arocha-Pinango C. L. 1967; Fibrinolysis por contacto con orugas. Acta Cientifica venezalana 18: 136.
  • 4 Arocha-Pinango C. L, Layrisse M. 1969; Fibrinolysis produced by contact with a caterpillar. Lancet I: 810.
  • 5 Astrup T, Mullertz S. 1952; Fibrin plate method for estimating fibrinolytic activity. Archives of Biochemistry and Biophysics 40: 346.
  • 6 Blombäck B, Blombäck M, Nilsson I. M. 1957; Coagulation studies on Reptilase and extract of the venom from Bothrops jacaraca. Thrombosis et Diathesis Haemorrhagica 01: 1.
  • 7 Davis B. 1964; Disc electrophoresis II. Method and application in human serum proteins. Annals of the New York Academy of Sciences 121: 404.
  • 8 Forbes C. D, Turpie A GG, Fergtjson J. C, McNicol G. P, Douglas A. S. 1969; Effect of gaboon viper (Bitis gabonica) venom on blood coagulation, platelets and the fibrinolytic enzyme system. Journal of Clinical Pathology 22: 312.
  • 9 Hardisty R. M, Ingram G. I. C. 1965. Bleeding Disorders: Investigation and Management. Blackwell Scientific Publications; Oxford.:
  • 10 Hawkey C. M. 1966; Plasminogen activator in saliva of the vampire bat (Desmodus Rotundus). Nature 211: 436.
  • 11 Hellman K, Hawkins R. 1965; Proxilin-S and Proxilin-G two anticoagulants from Rhodnius Prolixus (Stal). Nature 207: 265.
  • 12 Knight C. S. 1967; Fundamental of design and usage of ion exchange cellulose in biochemistry. Advances in Chromatography 04: pQ1.
  • 13 Kohn J. 1957; A cellulose acetate supporting medium for zone electrophoresis. Clinica ehimica acta 02: 297.
  • 14 MacFARLANE R. G. 1961; The coagulant action of Russell’s viper venom: The use of antivenom in defining its reaction with a serum factor. British Journal of Haematology 07: 496.
  • 15 MacFARLANE R. G, Biggs R. 1953; A thrombin generation test. Journal of Clinical Pathology 06: 3.
  • 16 MacKay N, Ferguson J. C, McNicol G. P. 1968; Effects of three mamba venoms on the haemostatic mechanisms. British Journal of Haematology 15: 549.
  • 17 Markwardt F, Leberecht E. 1959; Untersuchungen über den blutgerinnungshemmenden Wirkstoff der Tabaniden. Naturwissenschaften 46: 17.
  • 18 Markwardt F, Schulz E. 1960; a Über den Mechanismus der blutgerinnungshemmenden Wirkung des Tabanins. Archiv für experimentelle Pathology und Pharmakologie 238: 320.
  • 19 Maekwardt F, Schulz E. 1960; b Über einen Hemmstoff des Gerinnungsfermentes Thrombin aus blutsaugenden Raubwanzen (Reduviiden). Naturwissenschaften 47: 43.
  • 20 Marsh I. S.TA, Arocha-Pinango C. L. 1971; Observation on a Saturnid Moth Caterpillar causing severe bleeding in man. Proceedings of the Royal Entomology Society 36: 16.
  • 21 Sharp A. A, Warren E. A, Paxton A. M, Allington M. J. 1968; Anticoagulant therapy with a purified fraction of Malayan pit viper venom. Lancet I: 493.
  • 22 Svendsen P. J, Rose C. 1970; Separation of protein using ampholine carrier amploytes as buffer and space ions in an isotachophoresis system (LKB) Instrument. 17: 13.
  • 23 Warburg D, Christian W. 1941; Isolierung und Kristallisation des Gärungsferments Enolasw. Biochemische Zeitschrift 310: 384.
  • 24 WIEME R. J. 1965. Agargel Electrophoresis. Elsevier.: