When compared with derivatives of benzamidine, the synthetic antifibrinolytics EACA, PAMBA, and trans-AMCHA are weak competitive inhibitors of ester hydrolysis by urokinase, of plasminogen activation by urokinase and streptokinase, and of plasmin action on synthetic substrates, casein, and fibrinogen. In contrast, the inhibitory effect of the antifibrinolytics equal or surpass, that of benzamidine derivatives on the process of fibrin dissolution by plasmin and on plasma clot lysis. Degradation of fibrin monomers by plasmin seems to be equally strongly inhibited by the antifibrinolytics. Thus, fibrin and fibrin monomers are plasmin substrates, the hydrolysis of which is inhibited by the antifibrinolytics in a different way from their other inhibitory effects on plasmin. It is concluded that this activity accounts for the strong action of these inhibitors on the whole process of fibrinolysis.
Plasmin, in contrast to other proteolytic enzymes, was shown to possess a specific ability to attack fibrin resulting in rapid formation of soluble products from the insoluble substrate. The strong inhibitory effect of the antifibrinolytics is not caused by their reaction with the substrate, fibrin, but by their blocking the specific interaction of plasmin with fibrin.
The molecular mechanism of the plasmin-fibrin reaction and its inhibition is discussed.
References
1
Abiko Y,
Iwamoto M.
1970; Plasminogen-plasmin system. VII. Potentiation of antifibrinolytic action of a synthetic inhibitor, tranexamic acid, by α2-macroglobulin antiplasmin. Biochimica et Biophysica Acta 214: 411.
2
Ablondi F. B,
Hagan J. J,
Philips M,
de Renzo E. C.
1959; Inhibition of plasmin, trypsin and the streptokinase-activated fibrinolytic system by e-aminocaproic acid. Archives of Biochemistry and Biophysics 82: 153.
3
Alkjaersig N,
Fletcher A. P,
Sherry S.
1959; e-Aminocaproic acid: An inhibitor of plasminogen activation. The Journal of Biological Chemistry 234: 832.
4
Ambrus C. M,
Ambrus J. L,
Lassman H. B,
Mink I. B.
1968; Studies on the mechanism of action of inhibitors of the fibrinolytic system. Annals of the New York Academy of Sciences 146: 430.
5
Ambrus J. L,
Ambrus C. M,
Stutzman L,
Schimert G,
Jacobsen R,
Schor J. M,
Jainchill J.
1970. Therapeutic studies with fibrinolytic and antifibrinolytic agents. In:
Schor J. M.
(ed.), Chemical Control of Fibrinolysis-Thrombolysis. Theory and Clinical Applications. Wiley; New York, London, Sidney, Toronto, 153.:
6
Baumgarten W,
Priester L. I,
Stiller D. W,
Duncan A. E. W,
Ciminera J. L,
Loeffler L. J.
1969; 4-Aminomethylbicyclo-(2.2.2)-octane-l-carboxylic acid, a new potent antifibrinolytic agent. Its evaluation by in vitro assay procedures. Thrombosis et Diathesis Haemorrhagica 22: 263.
10
Brockway W. J,
Castellino F. J.
1971; The mechanism of inhibition of plasmin activity by epsilon-aminocaproic acid. The Journal of Biological Chemistry 246: 4641.
12
Donaldson V. H.
1964; Activation of partially purified plasminogen in the presence of e-amino- caproic acid. The J ournal of Laboratory and Clinical Medicine 63: 213.
13
Dubber A. H,
McNicol G. P,
Douglas A. S.
1965; Amino methyl cyclohexane carbo- xylic acid (AMCHA), a new synthetic fibrinolytic inhibitor. British Journal of Haematology 11: 237.
16
Fttktjtake K,
Shlda K,
Arakawa T,
Kato K.
1960; Analysis of fibrinolysis by the use of epsilon-aminocaproic acid: Preliminary report. Blood 15: 690.
18
Geratz J. D.
1967; p-Amidinophenylpyruvic acid: a new effective inhibitor of enterokinase and trypsin. Archives of Biochemistry and Biophysics 118: 91.
21
Godal H. C,
Theodor I.
1965; In vitro inhibition of streptokinase-induced proteolysis by trasylol and by epsilon amino caproic acid (EACA). The Scandinavian Journal of Clinical and Laboiatory Investigation, 17, Suppl 84: 199.
22
Igawa T,
Watanabe H,
Amano M,
Okamoto S.
1959; Viscosimetric study of the action of s - amino - caproic acid on human plasmin. The Keio Journal of Medicine 08: 225.
23
Iwamoto M,
Abiko Y,
Shimizu M.
1968; Plasminogen-plasmin system. III. Kinetics of plasminogen activation and inhibition by some synthetic inhibitors. The Journal of Biochemistry 64: 759.
24
Kazmirowski H-G,
Neuland P,
Landmann H,
Markwardt F.
1967; Synthese antiproteolytisch wirksamer Derivate der 4 - Aminome thy lb enz o es äur e und anderer Struktur verwandter Verbindungen. Die Pharmazie 22: 465.
29
Landmann H,
Markwardt F,
Kazmirowski H-G,
Neuland P.
1967; Zusammenhänge zwischen chemischer Konstitution und Antitrypsinwirkung bei Derivaten der 4-Amino- methyl-benzoesäure und anderen strukturverwandten cyclischen Verbindungen. Hoppe- Seyler’s Zeitschrift für Physiologische Chemie 348: 745.
30
Loeffler L. J,
Britcher S. F,
Baumgarten W.
1970; Bridged bicyclic and polycyclic amino acids. Potent new inhibitors of the fibrinolytic process. The Journal of Medicinal Chemistry 13: 926.
33
Lohmann K,
Maekwardt F,
Landmann H.
1964; Zusammenhänge zwischen Konstitution und Wirkung bei Hemmstoffen der Fibrinolyse. Thrombosis et Diathesis Haemorrhagica 10: 424.
35
Lukasiewicz H,
Niewiarowski S.
1968; In vitro studies on the mechanism of the antifibrinolytic action of e-aminocaproic acid. Thrombosis et Diathesis Haemorrhagica 19: 584.
36
Lukasiewicz H,
Niewiarowski S,
Woeowski K.
1968; The plasmin inhibition by synthetic antifibrinolytic agents in relation to the type of substrate. Biochimica et Biophysica Acta 159: 503.
38
Marder V. J,
Shulman N. R.
1969; High molecular weight derivatives of human fibrinogen produced by plasmin. II. Mechanism of their anticoagulant activity. The Journal of Biological Chemistry 244: 2120.
39
Mares-Guia M,
Shaw E.
1965; Studies on the active center of trypsin. The binding of amidines and guanidines as models of substrate side chain. The Journal of Biological Chemistry 240: 1517.
41
Markwardt F,
Landmann H,
Walsmann P.
1968; Comparative studies on the inhibition of trypsin, plasmin, and thrombin by derivatives of benzylamine and benzamidine. European Journal of Biochemistry 06: 502.
42
Markwardt F,
Neuland P,
Klöcking H-P.
1966; Über die antifibrinolytische Wirkung von Estern der 4-Aminomethylbenzoesäure (PAMBA). Die Pharmazie 21: 345.
45
Maxwell R. E,
Lewandowski V,
Nickel V. S,
Nawrocki J. W.
1967; Substrate modification and the mechanism of potentiation of plasmin inhibition by co-amino acids. Thrombosis et Diathesis Haemorrhagica 18: 299.
46
Maxwell R. E,
Nawrocki J. W,
Nickel V. S.
1968; Some complexities of multiple inhibitor interactions in fibrinolytic systems. Thrombosis et Diathesis Haemorrhagica 19: 117.
47
Maxwell R. E,
Nawrocki J. W,
Nickel V. S.
1970. Multiple inhibitor interactions in the control of fibrinolysis. In:
Schor J. M.
(ed.), Chemical Control of Fibrinolysis-Thrombolysis. Theory and Clinical Applications; Wiley; New York, London, Sidney, Toronto: 287.
48
Melandee B,
Gliniecki G,
Granstrand B,
Hanshoff G.
1964. The aitifibrinolyti- cally active isomer of AMCHA. Xth Congress of the International Society of Haematology. Stockholm 1964, Abstracts G; 68.
50
Okamoto S,
Nakajima T,
Okamoto U,
Watanabe H,
Iguchi Y,
Igawa T,
Chien C-C,
Hayashi T.
1959; A supressing effect of £-amino-n-caproic acid on the bleeding of dogs, produced with the activation of plasmin in the circulatory blood. The Keio Journal of Medicine 08: 247.
51
Okamoto S,
Sato S,
Takada Y,
Okamoto U.
1964; An active isomer (trans-form) of AMCHA and its antifibrinolytic (antiplasminic) action in vitro and in vivo. The Keio Journal of Medicine 13: 177.
52
Ratnoff O. D,
Menzie C.
1951; A new method for the determination of fibrinogen in small samples of plasma. The Journal of Laboratory and Clinical Medicine 37: 316.
56
Sherry S,
Alkjaersig N,
Fletcher A. P.
1966; Activity of plasmin and streptokinase activator on substituted arginine and lysine esters. Thrombosis et Diathesis Haemorrhagica 16: 18.
57
Summaria L,
Hsieh B,
Robbins K. C.
1967; Specific mechanism of activation of human plasminogen to plasmin. The Journal of Biological Chemistry 242: 4279.
58
Wallen P.
1962; Studies on the purification of human plasminogen. I. The preparation of a partially purified human plasminogen with low spontaneous proteolytic activity. Arkiv for Kemi 19: 451.