Thromb Haemost 1992; 67(01): 154-160
DOI: 10.1055/s-0038-1648398
Original Articles
Schattauer GmbH Stuttgart

Processing and Characterization of Recombinant von Willebrand Factor Expressed in Different Cell Types Using a Vaccinia Virus Vector

P Meulien
1   Transgène S.A., Strasbourg, France
,
M Nishino
2   INSERM U.143, Hôpital Bicêtre, le Kremlin-Bicêtre, France
,
C Mazurier
3   Laboratoire de Recherche sur l’Hémostase, CRTS, Lille, France
,
K Dott
1   Transgène S.A., Strasbourg, France
,
G Piétu
2   INSERM U.143, Hôpital Bicêtre, le Kremlin-Bicêtre, France
,
S Jorieux
3   Laboratoire de Recherche sur l’Hémostase, CRTS, Lille, France
,
A Pavirani
1   Transgène S.A., Strasbourg, France
,
J P Girma
2   INSERM U.143, Hôpital Bicêtre, le Kremlin-Bicêtre, France
,
D Oufkir
3   Laboratoire de Recherche sur l’Hémostase, CRTS, Lille, France
,
M Courtney
1   Transgène S.A., Strasbourg, France
,
D Meyer
2   INSERM U.143, Hôpital Bicêtre, le Kremlin-Bicêtre, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 01. August 1990

Accepted after revision 17. Juni 1991

Publikationsdatum:
02. Juli 2018 (online)

Summary

The cloning of the cDNA encoding von Willebrand factor (vWF) has revealed that it is synthesized as a large precursor (pre-pro-vWF) molecule and it is now clear that the prosequence or vWAgll is responsible for the intracellular multimerization of vWF. We have cloned the complete vWF cDNA and expressed it using a recombinant vaccinia virus as vector. We have characterized the structure and function of the recombinant vWF (rvWF) secreted from five different cell types: baby hamster kidney (BHK), Chinese hamster ovary (CHO), human fibroblasts (143B), mouse fibroblasts (L) and primary embryonic chicken cells. Forty-eight hours after infection, the quantity of vWF antigen found in the cell supernatant varied from 3 to 12 U/dl depending on the cell type. By SDS-agarose gel electrophoresis, the percentage of high molecular weight forms of vWF varied from 39 to 49% relative to normal plasma for BHK, CHO, 143B and chicken cells but was less than 10% for L cells. In all cell types, the two anodic subbands of each multimer were missing. The two cathodic subbands were easily detected only in BHK and L cells. By SDS-PAGE of reduced samples, pro-vWF was present in similar quantity to the fully processed vWF subunit in L cells, present in moderate amounts in BHK and CHO and in very low amounts in 143B and chicken cells. rvWF from all cells bound to collagen and to platelets in the presence of ristocetin, the latter showing a high correlation between binding efficiency and degree of multimerization. rvWF from all cells was also shown to bind to purified FVIII and in this case binding appeared to be independent of the degree of multimerization. We conclude that whereas vWF is naturally synthesized only by endothelial cells and megakaryocytes, it can be expressed in a biologically active form from various other cell types.

 
  • References

  • 1 Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. Shear-dependent decrease of adhesion in von Willebrand’s disease and the Bernard Soulier Syndrome. J Lab Clin Med 1978; 92: 750-764
  • 2 Baumgartner HR, Tschopp TB, Meyer D. Shear rate dependent inhibition of platelet adhesion and aggregation on collagenous surfaces by antibodies to human factor VIII/von Willebrand factor. Br J Haematol 1980; 44: 127-139
  • 3 Brinkhous KM, Sandberg H, Garris JB, Mattsson C, Palm M, Griggs T, Read MS. Purified human factor VIII procoagulant protein: comparative hemostatic response after infusions into hemophilic and von Willebrand disease dogs. Proc Natl Acad Sei USA 1985; 82: 8752-8756
  • 4 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57: 1140-1143
  • 5 Girma JP, Meyer D, Verweij CL, Pannekoek H, Sixma JJ. Structure-function relationship of human von Willebrand factor. Blood 1987; 70: 605-611
  • 6 Verweij CL, Diergaarde PJ, Hart M, Pannekoek H. Full length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J 1986; 5: 1839-1847
  • 7 Shelton-Inloes BB, Titani K, Sadler JE. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry USA 1986; 25: 3164-3177
  • 8 Bonthron D, Orr EC, Mitsock LM, Ginsburg D, Handin RI, Orkin SH. Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucl Acids Res 1986; 14: 7125-7127
  • 9 Fay PJ, Kawai Y, Wagner DD, Ginsburg D, Bonthron D, Ohlsson-Wilhelm BM, Chavin SI, Abraham GN, Handin R, Orkin SH, Montgomery RR, Marder VJ. Propolypeptide of von Willebrand factor circulates in blood and is identical to von Willebrand antigen II. Science 1986; 232: 995-997
  • 10 Wise RJ, Pittman DD, Handin RI, Kaufman RJ, Orkin SH. The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell 1988; 52: 229-236
  • 11 Verweij CL, Hart M, Pannekoek H. Expression of variant von Willebrand factor (vWF) cDNA in heterologous cells: requirement of the pro-polypeptide in vWF multimer formation. EMBO J 1987; 6: 2885-2890
  • 12 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46: 185-190
  • 13 Bonthron DT, Handin RI, Kaufman RJ, Wasley LC, Orr EC, Mitsock LM, Ewenstein B, Loscalzo J, Ginsburg D, Orkin SH. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature 1986; 324: 270-275
  • 14 Wu QY, Bahnak BR, Coulombei L, Kerbiriou-Nabias D, Drouet L, Pietu G, Meulien P, Pavirani A, Caen JP, Meyer D. Analysis of von Willebrand factor mRNA from the lung of pigs with severe von Willebrand disease using a human cDNA probe. Blood 1988; 71: 1341-1346
  • 15 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sei USA 1977; 74: 5463-5467
  • 16 Kieny MP, Lathe R, Drillien R, Spehner D, Skory S, Schmitt D, Wiktor T, Koprowski H, Lecocq JP. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 1984; 312: 163-166
  • 17 Mazurier C, Parquet-Gernez A, Goudemand M. Dosage de l’antigène lié au Facteur VIII par la technique ELISA. Intérêt dans l’étude de la maladie de Willebrand. Pathol Biol Paris 1977; 25 (suppl) 18-24
  • 18 Kinoshita S, Harrison J, Lazerson J, Abildgaard CF. A new variant of dominant type II von Willebrand disease with aberrant multimeric pattern of factor VlII-related antigen (type IID). Blood 1984; 63: 1369-1371
  • 19 Takahashi Y, Kalafatis M, Girma JP, Sewerin K, Andersson LO, Meyer D. Localization of a Factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor. Blood 1987; 70: 1679-1682
  • 20 Mazurier C, De Romeuf C, Parquet-Gernez A, Goudemand M. In vitro and in vivo characterization of a high-purity, solvent/detergent treated factor VIII concentrate: evidence for its therapeutic efficacy in von Willebrand’s disease. Eur J Haematol 1989; 43: 7-14
  • 21 Laemmli UK. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 1970; 227: 680-685
  • 22 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 1979; 76: 4350-4354
  • 23 Ardaillou N, Girma JP, Meyer D, Lavergne JM, Shoa’i I, Larrieu MJ. “Variants” of von Willebrand disease. Demonstration of a decreased antigenic reactivity by immunoradiometric assay. Thromb Res 1978; 12: 817-830
  • 24 Meyer D, Zimmerman TS, Obert B, Edgington TS. Hybridoma antibodies to human von Willebrand factor. I. Characterization of seven clones. Br J Haematol 1984; 57: 597-608
  • 25 Girma JP, Kalafatis M, Pietu G, Lavergne JM, Chopek MW, Edgington TS, Meyer D. Mapping of distinct von Willebrand factor domains interacting with platelet GPIb and GPIIb/IIIa and with collagen using monoclonal antibodies. Blood 1986; 67: 1356-1366
  • 26 Fraker PJ, Speck Jr JC. Proteins and cell membrane iodinations with a sparingly soluble chloroamide, 1, 3, 4, 6-tetrachloro-3a, 6a diphenyl-glycoluril. Biochem Biophys Res Commun 1978; 80: 849-857
  • 27 Schullek J, Jordan J, Montgomery RR. Interaction of von Willebrand factor with human platelets in the plasma milieu. J Clin Invest 1984; 73: 421-428
  • 28 Lopez-Fernandez MF, Lopez-Berges C, Corral M, Garcia-Talavera JR, Lopez-Borrasca A, Battle J. Assessment of multimeric structure and ristocetin-induced binding to platelets of von Willebrand factor present in cryoprecipitate and different factor VIII concentrates. Vox Sanguinis 1987; 52: 15-19
  • 29 Brown JE, Bosak JO. An ELISA test for the binding of von Willebrand antigen to collagen. Thromb Res 1986; 43: 303-311
  • 30 Chung E, Miller EJ. Collagen polymorphism: characterization of molecules with the chain composition al(III)3 in human tissues. Science 1974; 183: 1200-1201
  • 31 Nishino M, Girma JP, Rothschild C, Fressinaud E, Meyer D. A new variant of von Willebrand disease with defective binding to factor VIII. Blood 1989; 74: 1591-1599
  • 32 Fulcher CA, Zimmerman TS. Characterization of the human factor VIII procoagulant protein with a heterologous precipitating antibody. Proc Natl Acad Sci USA 1982; 79: 1648-1652
  • 33 Shelton-Inloes BB, Broze Jr GJ, Miletich JP, Sadler JE. Evolution of human von Willebrand factor: cDNA sequence polymorphisms, repeated domains, and relationship to von Willebrand antigen II. Biochem Biophys Res Commun 1987; 144: 657-665
  • 34 Fowler WE, Fretto LJ, Hamilton KK, Erickson HP, McKee PA. Substructure of human von Willebrand factor. J Clin Invest 1985; 76: 1491-1500
  • 35 Verweij CL, Hart M, Pannekoek H. Proteolytic cleavage of the precursor of von Willebrand factor is not essential for multimer formation. J Biol Chem 1988; 263: 7921-7924
  • 36 Baruch D, Bahnak BR, Girma JP, Meyer D. von Willebrand factor and platelet function. In: Platelet Disorders. Caen JP. (ed). Baillères Clinical Haematology, Baillères Tindall - WB Saunders Co; London: 1989. pp 627-672
  • 37 Santoro SA. Preferential binding of high molecular weight forms of von Willebrand factor to fibrillar collagen. Biochem Biophys Acta 1983; 756: 123-126
  • 38 Doucet-de-Bruine MHM, Sixma JJ, Over J, Beeser-Visser NH. Heterogeneity of human factor VIII. II. Characterization of forms of factor VUI-binding to platelets in the presence of ristocetin. J Lab Clin Med 1978; 92: 96-107
  • 39 Gralnick HR, Williams SB, Morisato DK. Effect of multimeric structure of the factor VIII/von Willebrand factor protein on binding to platelets. Blood 1981; 58: 387-397
  • 40 Federici AB, Bader R, Pagani S, Colibretti ML, De Marco L, Mannucci PM. Binding of von Willebrand factor to glycoproteins lb and Ilb/IIIa complex: affinity is related to multimeric size. Br J Haematol 1989; 73: 93-99
  • 41 Jorieux S, Magallon T, Mazurier C. Evidence that NH2-terminal but not COOH-terminal moiety of plasma von Willebrand factor binds to factor VIII. Thromb Res 1987; 48: 205-210
  • 42 Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major Factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262: 8443-8446