Thromb Haemost 1993; 70(02): 234-237
DOI: 10.1055/s-0038-1649474
Review Article
Schattauer GmbH Stuttgart

The Formation of the Haemostatic Plug – A Special Case of Platelet Aggregation

An Experiment and a Survey of the Literature
Ernst F Lüscher
The Theodor Kocher Institute, Bern, Switzerland
,
Susanne Weber
The Theodor Kocher Institute, Bern, Switzerland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received17. Dezember 1992

Accepted after revision 03. März 1993

Publikationsdatum:
04. Juli 2018 (online)

Summary

The formation of the haemostatic plug is an extremely fast process. This excludes, at least in its first phase, the involvement of soluble activating agents released from or produced by the platelets. An experiment with ADP-activated, formaldehyde-fixed platelets shows that platelets with activated fibrinogen receptors will bind inactive platelets in the presence of fibrinogen and Ca2+-ions. A survey of the literature shows that platelet activation is accompanied by the clustering of the fibrinogen receptors. The surface of an activated platelet, which makes part of the growing haemostatic plug therefore is covered with patches of tightly packed fibrinogen. This allows the multisite combination with the statistically distributed low affinity receptors of the newly arriving platelets. Tightly packed fibrinogen, as present on clusters of the activated GP IIb/IIIa receptors as well as when absorbed to artificial surfaces acts as an activator of platelets. Thus, the propagation of the activation process is possible without a requirement for other, external activators. Such agents, which are released from platelets and, finally, thrombin formation, are nonetheless of vital importance, not for the formation but for the consolidation of the haemostatic plug.

 
  • References

  • 1 Marguerie GA, Plow EF, Edgington TS. Human platelets possess an inducible and saturable receptor for fibrinogen. J Biol Chem 1979; 245: 5357-5363
  • 2 Marguerie GA, Edgington TS, Plow EF. Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 1980; 255: 154-161
  • 3 Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974; 8: 253-260
  • 4 Phillips DR, Jenkins CSP, Lüscher EF, Larrieu MJ. Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature 1975; 257: 599-600
  • 5 Coller BS. A new murine monoclonal antibody reports an activation-dependent change in conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest 1985; 76: 101-108
  • 6 Shattil S, Hoxie JA, Cunningham M, Brass LE. Changes in the platelet membrane glycoprotein IIb-IIIa complex during platelet activation. J Biol Chem 1985; 260: 11107-11114
  • 7 Freilinger III AL, Lam SCT, Plow EF, Smith MA, Loftus JC, Ginsberg MH. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263: 12397-12402
  • 8 Born GVR, Kratzer MAA. Endogenous agents in platelet function. In: Mikrozirkulation und Prostaglandin Stoffwechsel. Blümel G, Haas S. (eds) Stuttgart, New York: Schattauer; 1981: 33-42
  • 9 Born GVR, Richardson PD. Activation time of blood platelets. J Membr Biol 1980; 57: 87-90
  • 10 Agam G, Livne A. Passive participation of fixed platelets in aggregation facilitated by covalently bound fibrinogen. Blood 1983; 61: 186-191
  • 11 Peerschke EJ, Zucker MB. Fibrinogen receptor exposure and aggregation of human blood platelets produced by ADP and chilling. Blood 1981; 57: 663-670
  • 12 De CristoforoR, Landolfi R, De CandiaC, Castagnola M, Di CeroE, Wyman J. Allosteric equilibria in the binding of fibrinogen to platelets. Proc Natl Acad Sci USA 1988; 85: 8473-846
  • 13 Kornecki E, Niewiarowski S, Morinelli TA. Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann’s thrombasthenic platelets. J Biol Chem 1981; 256: 5696-5701
  • 14 Peerschke EIB, Zucker MB, Grant RA, Egan JJ, Johnson MM. Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 1980; 55: 841-847
  • 15 Sims PJ, Ginsberg MH, Plow EF, Shattil SJ. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem 1991; 266: 7345-7352
  • 16 Polley MJ, Leung LLK, Clark F, Nachman RL. Thrombin-induced platelet membrane glycoprotein IIb and IIIa complex formation. An electron microscope study. J Exp Med 1981; 154: 1058-1068
  • 17 Isenberg WM, Stenberg PE, McEver RP, Shuman MA, Bainton DF. A platelet β-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation: Immunolabel on frozen thin sections and surface replicas. Abstr 21st Congr Int Soc Haematol 1986; 322
  • 18 Asch AS, Leung LLK, Polley MJ, Nachman RL. Platelet membrane topography: Colocalization of thrombospondin and fibrinogen with the glycoprotein IIb-IIIa complex. Blood 1985; 66: 926-934
  • 19 Shiba E, Fossel E, Lindon J, McEver R, Salzman EW. Glycoprotein IIb/IIIa clustering in activated platelet, demonstrated by nuclear magnetic resonance. Arteriosclerosis 1988; 8: 669a
  • 20 Kakaiya RM, Kiraly TL, Cable RG. Concanavalin A increases patching/capping of the platelet membrane glycoprotein IIb/IIIa complex. Thromb Haemostas 1988; 59: 281-283
  • 21 Peerschke EIB. Evidence for interaction between platelet fibrinogen receptors. Blood 1882; 60: 973-977
  • 22 Morgenstern E, Edelman L, Reimers HJ, Miyashita C, Haurand M. Fibrinogen distribution on surfaces and in organelles of ADP-stimulated human blood platelets. Eur J Cell Biol 1985; 38: 292-300
  • 23 Morgenstern E, Reimers HJ. Ultrastructure of platelet-fibrinogen interaction. In: Fibrinogen and its Derivatives. Müller-Berghaus G. et al. (ed) Amsterdam: Elsevier; 1986
  • 24 Hourdille P, Hasitz M, Belloc F, Nurden AT. Immunocytochemical study of binding of fibrinogen and thrombospondin to ADP- and thrombin-stimulated human platelets. Blood 1985; 65: 912-920
  • 25 Suzuki H, Thnoue K, Yamazaki H. Morphological evidence for the association of plasma membran glycoprotein IIb/IIIa with the membrane cytoskeleton in human platelets. Histochemistry 1991; 96: 31-39
  • 26 Painter RG, Gaarde W, Ginsberg MH. Direct evidence for the interaction of platelet surface membrane proteins GP IIb and IIIa with cytoskeletal components: protein crosslinking studies. J Cell Biochem 1985; 27: 277-290
  • 27 Pribluda V, Laub F, Rotman A. The state of actin in activated human platelets. Eur J Biochem 1981; l16: 293-296
  • 28 Jenning LK, Phillips DR. Rapid actin polymerization following thrombin activation of human platelets. Fed Proc 1980; 39: 2047
  • 29 Carrell NA, Fitzgerald LA, Steiner B, Erickson HP, Phillips DR. Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy. J Biol Chem 1985; 260: 1743-1749
  • 30 Baldassare JJ, Kahn RA, Knipp MA, Newman PJ. Reconstitution of platelet proteins into phospholipid vesicles: functional proteoliposomes. Blood 1984; 64 (Suppl. 01) 242a
  • 31 Ryback ME. Glycoproteins IIb and IIIa and platelet thrombospondin in a liposome model for platelet aggregation. Thromb Haemostas 1986; 55: 240-245
  • 32 Park K, Gerndt SJ, Park H. Patchwise adsorption of fibrinogen on glass surfaces and its implication in platelet adhesion. J Colloid Interface Sci 1988; 125: 702-711
  • 33 Tomikawa M, Iwamoto M, Olsson P, Söderman S, Blombäck B. On the platelet fibrinogen interaction. Thromb Res 1980; 19: 869-876
  • 34 Coller BS. Interaction of normal, thrombasthenic, and Bernard-Soulier platelets with immobilized fibrinogen: Defective platelet-fibrinogen interaction in thrombasthenia. Blood 1980; 55: 169-178
  • 35 Lindon JN, Shiba E, Kushner L, Salzman EW. The role of fibrinogen in platelet interaction with methacrylate polymers. Mater Res Soc Symp Proc 1987; 1988: 661-666
  • 36 Shiba E, Lindon JN, Kushner L, Matsueda GR, Hawiger J, Kloczewiak M, Kudrik B, Salzman EW. Antibody-detectable changes in fibrinogen adsorption affecting platelet activation on polymer surfaces. Am J Physiol 1991; 260: C965-C974
  • 37 Chinn JA, Horbett TA, Tatner BC. Baboon fibrinogen adsorption and platelet adhesion to polymeric materials. Thromb Haembstas 1991; 65: 608-617
  • 38 Kieffer N, Fitzgerald LA, Wolf D, Cheresh DA, Phillips DR. Adhesive properties of the β3 integrins: Comparison of GP IIb-IIIa and the vitronectin receptor individually expressed in human melanoma cells. J Cell Biol 1991; 113: 451-461
  • 39 Savage B, Ruggeri ZM. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb-IIIa on non-activated platelets. J Biol Chem 1991; 266: 11227-11233
  • 40 Gugler E, Lüscher EF. Platelet function in congenital afibrinogenemia. Thromb Diathes Haemorrh 1965; 14: 361-373
  • 41 Shiba E, Lindon J, Kushner L, Kloczewiak M, Hawiger J, Matsueda G, Kudryk B, Salzman EW. Changes in the conformation of fibrinogen adsorbed on polymer surfaces detected by polyclonal and monoclonal antibodies. Circulation 1988; 78 (02) 662
  • 42 O’Toole TE, Loftus JC, Du X, Glass AA, Ruggeri ZM, Shattil SJ, Plow EF, Ginsberg MH. Affinity modulation of the αIIbβ3 integrin (platelet GP IIb/IIIa) is an intrinsic property of the receptor. Cell Regul 1990; 01: 883-893
  • 43 Sheppeck RA, Bentz M, Dickson C, Hribar S, white J, Janosky J, Berceli SA, Borovetz HS, Johnson PC. Examination of the role of glycoprotein Ib and glycoprotein IIb/IIIa in platelet deposition on an artificial surface using clinical antiplatelet agents and monoclonal antibody blockade. Blood 1991; 78: 673-680
  • 44 Olundare OE, Simmons SR, Albrecht RM. Cytochalasin D and E: Effects on fibrinogen receptor movement and cytoskeletal reorganization in fully spread, surface-activated platelets: A correlative light and electron microscopic investigation. Blood 1992; 79: 99-109
  • 45 Parise LV, Helgerson SL, Steiner B, Nannizzi L, Phillips DR. Synthetic peptides derived from fibrinogen and fibronectin change the conformation of purified platelet glycoprotein IIb-IIIa. J Biol Chem 1987; 262: 12597-12602
  • 46 Du X, Plow EF, Freilinger III AL, O’oole TE, Loftus JC, Ginsberg MH. Ligands activate integrin αIIbβ3 (platelet GP IIb-IIIa). Cell 1991; 65: 409-416
  • 47 Isenberg WM, McEver RP, Phillips DR, Shuman MA, Bainton DE. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering. J Cell Biol 1987; 104: 1655-1662
  • 48 McManama G, Lindon JN, Kloczewiak M, Smith MA, Ware JA, Hawiger J, Merrill EW, Salzman EW. Platelet aggregation by fibrinogen polymers cross-linked across the E-domain. Blood 1986; 68: 363-371
  • 49 Zucker MB, Peterson J. Serotonin, platelet factor 3 activity and platelet aggregating agent released by ADP. Blood 1967; 30: 556-565
  • 50 Bizzozero J. Über einen neuen Formbestandteil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchow’s Arch Path Anat Physiol Klin Med 1882; 90: 261-332
  • 51 Peerschke EIB. Recognition of platelet-associated fibrinogen by polyclonal antibodies: correlation with platelet aggregation. Blood 1992; 79: 2028-2033
  • 52 Lindon JN, McManama G, Kushner L, Merrill EW, Salzman Ew. Does the conformation of adsorbed fibrinogen dictate platelet interaction with artificial surface?. Blood 1986; 68: 355-362
  • 53 Zamarron C, Ginsberg MH, Plow EF. Receptor-induced binding sites (RIBS) are exposed in fibrinogen as a consequence of its interaction with platelets. Blood 1989; 74: 208a
  • 54 Zamarron C, Ginsberg MH, Plow EF. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemostas 1990; 64: 41-46
  • 55 Trezzini C, Jungi TW, Maly FE, Vittoz M, Peterhans E. Low affinity interaction of fibrinogen carboxy-gamma terminus with human monocytes induces an oxidative burst and modulates effector functions. Biochem Biophys Res Commun 1989; 165: 7-13
  • 56 Languino LR, Colella S, Zanetti A, Andrieux A, Ryckewaert JJ, Charon MH, Marchisio PC, Plow EF, Ginsberg MH. Fibrinogen ’ endothelial cell interaction in vitro: a pathway mediated by an Arg-Gly-Asp recognition specificity. Blood 1989; 73: 734-742
  • 57 Rosenfeld SI, Looney RJ, Leddy JP, Phipps DC, Abraham GN, Anderson CL. Human platelet Fc receptor for immunoglobulin G. J Clin Invest 1985; 76: 2317-2324
  • 58 Singer A, Hodes R. Mechanism of T cell-B cell interaction. Annu Rev Immunol 1983; 1: 211