Subscribe to RSS
DOI: 10.1055/s-0038-1649593
A New Type of Congenital Dysfibrinogen, Fibrinogen Bremen, with an Aα Gly-17 to Val Substitution Associated with Hemorrhagic Diathesis and Delayed Wound Healing
Publication History
Received 11 December 1992
Accepted after revision 05 April 1993
Publication Date:
05 July 2018 (online)
Summary
We have identified a new type of Aα Gly-17 to Val substitution in a congenital dysfibrinogen, fibrinogen Bremen, derived from a 15-year-old boy having manifested easy bruising and delayed wound healing. The functional abnormality was characterized by altered fibrin monomer polymerization, which became evident by increasing the salt concentration and pH. A synthetic tetrapeptide with a sequence of the amino-terminal segment of normal fibrin α-chain, Gly-Pro-Arg-Val, substantially inhibited polymerization of both normal and the patient-derived fibrin monomers. A synthetic tetrapeptide with the Bremen type sequence of Val-Pro-Arg-Val inhibited polymerization of the patient’s fibrin monomers partially at a peptide: fibrin monomer molar ratio of 4,000:1, and that of normal one at a much higher ratio of 10,000:1. Likewise, a synthetic peptide Ala-Pro-Arg-Val with a replacement of the Gly residue by another aliphatic amino acid Ala inhibited similarly the patient’s fibrin monomer polymerization. Thus, the hypothetical two-pronged socket-like structure consisting of the α-amino group of the amino-terminal Gly and the guanidino group of an Arg at position 3 of the normal fibrin α-chain seems to be restored considerably in the mutant fibrin α-chain at low ionic strengths and pH’s, despite the replacement of the amino-terminal Gly by another aliphatic amino acid Val.
-
References
- 1 Doolittle RF. Structural aspects of the fibrinogen-fibrin conversion. Adv Prot Chem 1973; 27: 1-109
- 2 Blombäck B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature (Lond) 1978; 275: 501-505
- 3 Doolittle RF. Fibrinogen and fibrin. Thrombosis and Haemostasis. 2.. In: Bloom AL, Thomas DP. (eds) Churchill Livingstone: Edinburgh; 1987. pp 192-215
- 4 Fowler WE, Hantgan RR, Hermans J, Erickson HP. Structure of the fibrin protofibril. Proc Natl Acad Sci USA 1981; 78: 4872-4876
- 5 Weisel JW. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J 1986; 50: 1079-1093
- 6 Heene DL, Matthias FR. Adsorption of fibrinogen derivatives on insolubilized fibrinogen and fibrin-monomer. Thromb Res 1973; 2: 137-154
- 7 Kudryk B, Reuterby J, Blombäck B. Adsorption of plasmic fragment D to thrombin modified fibrinogen-Sepharose. Thromb Res 1973; 2: 297-304
- 8 Kudryk B, Collen D, Woods KR, Blomb ck. Evidence for localization of polymerization sites in fibrinogen. J Biol Chem 1974; 249: 3322-3325
- 9 Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA 1980; 77: 1374-1378
- 10 Olexa SA, Budzynski AZ. Localization of a fibrin polymerization site. J Biol Chem 1981; 256: 3544-3549
- 11 Southan C, Thompson E, Panico M, Etienne T, Morris HR, Lane DA. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen. J Biol Chem 1985; 260: 13095-13101
- 12 Váradi A, Scharaga HA. Localization of segments essential for polymerization and for calcium binding in the γ-chain of human fibrinogen. Biochemistry 1986; 25: 519-528
- 13 Ugarova T, Budzynski AZ. Interaction between complementary polymerization sites in the structural D and E domains of human fibrin. J Biol Chem 1992; 267: 13687-13693
- 14 Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 1978; 75: 3085-3089
- 15 Laudano AP, Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry 1980; 19: 1013-1019
- 16 Shimizu A, Saito Y, Matsushima A, Inada Y. Identification of an essential histidine residue for fibrin polymerization. Essential role of histidine 16 of the Bβ-chain. J Biol Chem 1983; 258: 7915-7917
- 17 Shimizu. Nagel GM, Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Isolation and characterization of a labeled cyanogen bromide segment corresponding to γ-chain residue 337-379. Proc Natl Acad Sci USA 1992; 89: 2888-2892
- 18 Yamazumi K, Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Localization of the label to γ-chain Tyr-363. Proc Natl Acad Sci USA 1992; 89: 2893-2896
- 19 Doolittle RF, Laudano AP. Synthetic peptide probes and the location of fibrin polymerization sites. Protides Biol Fluids 1980; 28: 311-316
- 20 Southan C. Molecular and genetic abnormalities of fibrinogen. In: Fibrinogen, Fibrin Stabilisation, and Fibrinolysis. Francis JL. (ed) Ellis Horwood, Chichester. 1988. pp 65-99
- 21 Matsuda M. The present status of structure elucidation. Biomed Prog 1991; 4: 51-54
- 22 Tocantins LA, Kazal LA. (eds) Blood Coagulation, Hemorrhage and Thrombosis. Methods of Study. Grune & Stratton, Inc.; New York: 1964: 29-150
- 23 Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol (Basel) 1957; 17: 237-246
- 24 Laurell CB. Quantitative estimation of proteins be electrophoresis in agarose gel containing antibodies. Anal Biochem 1966; 15: 45-52
- 25 Matsuda M, Baba M, Morimoto K, Nakamikawa C. An abnormal fibrinogen with an impaired polymerization site on the aligned DD domain of fibrin molecules. J Clin Invest 1983; 72: 1034-1041
- 26 Yamazumi K, Shimura K, Terukina S, Takahashi N, Matsuda M. A γ methionine-310 to threonine substitution and consequent N-glycosylation at γ asparagine-308 identified in a congenital dysfibrinogenemia associated with posttraumatic bleeding, fibrinogen Asahi. J Clin Invest 1988; 83: 1590-1597
- 27 Deutsch DG, Mertz ET. Plasminogen. Purification from human plasma by affinity chromatography. Science (Wash. DC) 1970; 170: 1095-1096
- 28 Lorand D, Credo RB, Janus TJ. Factor XIII (fibrin-stabilizing factor). Methods Enzymol 1981; 80: 333-341
- 29 Lundblad RL. A rapid method for the purification of bovine thrombin and the inhibition of the purified enzyme with phenylmethylsulfonyl fluoride. Biochemistry 1971; 10: 2501-2506
- 30 Marder VJ, Shulman NR, Carroll WF. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physiochemical and immunological characterization. J Biol Chem 1969; 244: 2111-2119
- 31 Gollwitzer R, Timpl R, Becker U, Furthmyer H. Chemical and immunological properties of reduced and alkylated polypeptide chains of bovine fibrinogen. Eur J Biochem 1972; 28: 497-506
- 32 Barlow GH, Summaria L, Robbins KC. Molecular weight studies on human plasminogen and plasmin at the μg level. J Biol Chem 1969; 244: 1138-1141
- 33 Shwartz ML, Pizzo SV, Hill RL, McKee PA. Human factor XIII from plasma and platelets. J Biol Chem 1973; 248: 1395-1407
- 34 Asakura S, Hirata H, Okazaki H, Hashimoto-Gotoh T, Matsuda M. Hydrophobie residues 382-386 of antithrombin III, Ala-Ala-Ala-Ser-Thr, serve as the epitope for an antibody which facilitates hydrolysis of the inhibitor by thrombin. J Biol Chem 1990; 265: 5135-5138
- 35 Gralnick HR, Givelber HM, Shainoff JR, Finlayson JS. Fibrinogen Bethesda: a congenital dysfibrinogenemia with delayed fibrinopeptide release. J Clin Invest 1971; 50: 1819-1830
- 36 Terukina S, Matsuda M, Hirata H, Takeda Y, Miyata T, Takao T, Shimonishi Y. Substitution of γ Arg-275 by Cys in an abnormal fibrinogen, “fibrinogen Osaka II”: evidence for a unique solitary cystine structure at the mutation site. J Biol Chem 1988; 263: 13579-13587
- 37 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, de Bosch NB, Carvajal Z, Ojeda A, Arocha-Pinango CL, Matsuda M. An Aα Ser-434 to N-glycosylated Asn substitution in a dysfibrinogen, fibrinogen Caracas II, characterized by impaired fibrin gel formation. J Biol Chem 1991; 266: 11575-11581
- 38 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 1970; 227: 680-685
- 39 Kehl M, Lottspeich F, Henschen A. Analysis of human fibrinopeptides by high-performance liquid chromatography. Hoppe-Seyler 's Z Physiol Chem 1981; 362: 1661-1664
- 40 Haverkate F, Koopman J, Kluft C, D'Angelo A, Cottaneo M, Mannucci PM. Fibrinogen Milano II: a congenital dysfibrinogenemia associated with juvenile arterial and venous thrombosis. Thromb Haemostas 1986; 55: 131-135
- 41 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Pinango CL, Rodriguez S, Nagy H, Perez-Requejo JL, Matsuda M. Fibrinogen Lima: a homozygous dysfibrinogen with an Aα-arginine-141 to serine substitution associated with extra N-glycosylation at Aα-asparagine-139. J Clin Invest 1992; 90: 67-76
- 42 Miyata T, Terukina S, Matsuda M, Kasamatsu A, Takeda Y, Murakami T, Iwanaga S. Fibrinogens Kawaguchi and Osaka: an amino acid substitution of Aα-arginine-16 to cysteine which forms an extra interchain disulfide bridge between the two Aα chains. J Biochem 1987; 102: 93-101
- 43 Hewick RM, Hunkapillar MW, Hood LE, Dreyer WJ. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem 1981; 256: 7990-7997
- 44 Blombäck B, Blomb ck, Hessel B, Iwanaga S. Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature (Lond) 1967; 215: 1445-1448
- 45 Blombäck M, Blombäck B, Mammen EF, Prasad AS. Fibrinogen ‘Detroit’: a molecular defect in the N-terminal disulphide knot of human fibrinogen. Nature (Lond) 1968; 218: 134-137
- 46 Henschen A, Kehl M, Southan C, Lottspeich F, Georgopoulos D. Genetically abnormal fibrinogens - some current characterisation strategies. In: Fibrinogen - Structure, Functional Aspects, Metabolism. Haverkate F, Henschen A, Nieuwenhuizen W, Straub PW. (eds) Walter de Gruyter. Berlin: 1983. pp 125-144
- 47 Dempfle CEH, Henschen A. Fibrinogen Mannheim I - Identification of an Aα 19 Arg-Gly substitution in dysfibrinogenaemia associated with bleeding tendency. In: Fibrinogen 4. Current Basic and Clinical Aspects. Matsuda M, Iwanaga S, Takada A, Henschen A. (eds) Else vier, Amsterdam: 1990. pp 159-166
- 48 Blombäck B, Hessel B, Field R, Procyk R. Fibrinogen Aarhus: An abnormal fibrinogen with Aα 19 Arg Gly substitution. In: Fibrinogen 3. Biochemistry, Biological Functions, Gene Regulation and Expression. Mosesson MWE, Amrani DL, Siebenlist KR, DiOrio JP. (eds) Elsevier, Amsterdam: 1988. pp 263-266
- 49 Yoshida N, Okuma M, Hirata H, Matsuda M, Yamazumi K, Asakura S. Fibrinogen Kyoto II, a new congenitally abnormal molecule, characterized by the replacement of Aα proline-18 by leucine. Blood 1991; 78: 149-153
- 50 Uotani C, Miyata T, Kumabashiri I, Asakura H, Saito M, Matsuda T, Kajiyama S, Iwanaga S. Fibrinogen Kanazawa: a congenital dysfibrinogenemia with delayed polymerization having a replacement of proline-18 by leucine in the Aα chain. Blood Coagulation and Fibrinolysis 1991; 2: 413-417
- 51 Cochrane CG, Revak SD, Wuepper KD. Activation of Hageman factor in solid and fluid phases. A critical role of kallikrein. J Exp Med 1973; 138: 1564-1583
- 52 Di ScipioRG, Kurachi K, Davie EW. Activation of human factor IX (Christman factor). J Clin Invest 1978; 61: 1528-1538
- 53 Rickli EE. The activation mechanism of human plasminogen. Thromb Diath Haemorrh 1975; 34: 386-395