Thromb Haemost 1995; 74(03): 853-858
DOI: 10.1055/s-0038-1649836
Original Article
Clinical Studies
Schattauer GmbH Stuttgart

Effect of Fibrinogen Substitution in Afibrinogenemia on Hemorheology and Platelet Function

Armin J Reininger
1   The Anatomlsches Institut, Technlsche Universltät München, Neuherberg, Germany
,
Cornelia B Reininger
2   The Chirurglsche Klinik und Poliklinik, Neuherberg, Germany
,
Michael Spannagl
3   The Medizinische Klinik Innenstadt, Ludwig-Maximillans-Universität München, Neuherberg, Germany
,
Achim Mellinghoff
3   The Medizinische Klinik Innenstadt, Ludwig-Maximillans-Universität München, Neuherberg, Germany
,
Astrid Porr
1   The Anatomlsches Institut, Technlsche Universltät München, Neuherberg, Germany
,
Ulrich Heinzmann
4   The Institut für Pathologie, GSF-Forschungszentrum, Neuherberg, Germany
,
Laurenz J Wurzinger
1   The Anatomlsches Institut, Technlsche Universltät München, Neuherberg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 17. November 1994

Accepted after resubmission 18. Mai 1995

Publikationsdatum:
26. Juli 2018 (online)

Summary

Fibrinogen substitution can correct bleeding in afibrinogenemia. We assessed the effect of fibrinogen substitution in a patient lacking immunoreactive fibrinogen. Fibrinogen and thrombin time were not measurable before, but became detectable within 30 min after substitution, parallelled by an increase in ADP-induced platelet aggregation from <10% to 32%. Platelet adhesion, measured by Stagnation Point Flow Adhesio- Aggregometry, was notdetectable prior to substitution but attained normal values thereafter. Scanning electron microscopy of adhering platelets revealed pseudopodia protrusion and spreading. Morphometry revealed two populations of spread platelets one of which demonstrated inhibited spreading as compared to healthy controls. Immunoelectron microscopy revealed normal GPIIb/IIIa receptor expression, both before and after substitution. Dynamic and kinematic viscosity of plasma and whole blood remained below the 99.9% confidence border of a healthy control group. In afibrinogenemia fibrinogen levels as low as 10% of normal concentration sufficed to normalize coagulation, platelet adhesion, and, partially, spreading.

 
  • References

  • 1 McDonagh J, Carrell N. Disorders of Fibrinogen Structure and Function. In: Hemostasis and Thrombosis. Basie Principles and Clinical Practice Colman RW, Hirsh J, Marder VJ, Salzman EW. eds 2. edition J. B. Lip-pincott Company; Philadelphia, PA: 1987. pp 301-317
  • 2 Ruggeri ZM. Mechanisms of shear-induced platelet adhesionand aggregation. Thromb Haemost 1993; 70: 119-123
  • 3 Savage B, Shattil SJ, Ruggeri ZM. Modulation of platelet function through adhesion receptors. J Biol Chem 1992; 267: 11300-11306
  • 4 Ylänne J, Chen Y, Otoole TE, Loftus JC, Takada Y, Ginsberg MH. Distinct functions of integrin a and integrin b subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol 1993; 122: 223-233
  • 5 Dintenfass L, Kammer S. Plasma Viscosity in 615 Subjects. Effect of fibrinogen, globulin, and cholesterol in normals, peripheral vascular disease, retinopathy, and melanoma Biorheology 1977; 14: 247-251
  • 6 Somer T, Meiselman HJ. Disorders of blood viscosity. Ann Med 1993; 25: 31-39
  • 7 Hoffmann JJML, Bonnier JJRM, Melman PG, Bartholomeus I. Blood viscosity during thrombolytic therapy with anistreplase in acute myocardial infarction. Am J Cardiol 1993; 71: 14-18
  • 8 Petschek H, Adamis D, Kantrowitz AR. Stagnation flow thrombus formation. Trans Amer Soc Artif Int Organs 1968; 14: 256-260
  • 9 Crewe KH, Feuerstein IA. Platelet adhesion to fibrinogen-coated glass at an abrupt tubular expansion viewed with fluorescent video-microscopy. Biorheology 1986; 23: 443-452
  • 10 Karino T, Goldsmith HL. Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 1979; 17: 238-262
  • 11 Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis - basic principles and applications. Thromb Haemost 1986; 55: 415-435
  • 12 Schoephoerster RT, Oynes F, Nunez G, Kapadvanjwala M, Dewanjee MK. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscler Thromb 1993; 13: 1806-1813
  • 13 Badimon L, Badimon JJ. Mechanisms of arterial thrombosis in nonparallel streamlines. Platelet thrombi grow on the apex of stenotic severely injured vessel wall J Clin Invest 1989; 84: 1134-1144
  • 14 Peerschke EIB. Glycoprotein IIb and IIIa retention on fibrinogen-coated surfaces after lysis of adherent platelets. Blood 1993; 82: 3358-3363
  • 15 Baumgartner HR. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 1973; 5: 167-179
  • 16 Weiss HJ, Baumgartner HR, Tschopp TB, Turitto VT. Interaction of platelets with subendothelium: a new method for identifying and classifying abnormalities of platelet function. Ann NY Acad Sci 1977; 283: 293-309
  • 17 Sakariassen KS, Aarts PA M M, De Groot PG, Houdijk WP M, Sixma JJ. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J Lab Clin Med 1983; 102: 522-535
  • 18 Saelman EU M, Nieuwenhuis HK, Hese KM, de Groot PG, Heijnen HF G, Sage EH, Williams S, Mckeown L, Gralnick HR, Sixma JJ. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (α2β1-Integrin). Blood 1994; 83: 1244-1250
  • 19 Zucker MB, Vroman L. Platelet adhesion induced by fibrinogen adsorbed onto glass. Proc Soc Exp Biol Med 1969; 131: 318-320
  • 20 Nagai H, Handa M, Kawai Y, Watanabe K, Ikeda Y. Evidence that plasma fibrinogen and platelet membrane GPIIb-IIIa are involved in the adhesion of platelets to an artificial surface exposed to plasma. Thromb Res 1993; 71: 467-477
  • 21 Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM. Recognition,of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 1989; 58: 945-953
  • 22 Gartner TK, Amrani DL, Derrick JM, Kirschbaum NE, Matsueda GR, Taylor DB. Characterization of adhesion of resting and stimulated platelets to fibrinogen and its fragments. Thromb Res 1993; 71: 47-60
  • 23 Sakariassen KS, Nievelstein PFEM, Coller BS, Sixma JJ. The role of platelet membrane glycoproteins lb and Ilb-IIIa in platelet adherence to human artery subendothelium. Br J Haematol 1986; 63: 681-687
  • 24 Weiss HJ, Hawiger J, Ruggeri ZM, Turitto VT, Thiagarajan P, Hoffmann T. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein Ilb-IIIa complex at high shear rate. J Clin Invest 1989; 83: 288-297
  • 25 Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, Mcintire LV. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Wille- brand factor binding to platelets. Blood 1993; 81: 1263-1276
  • 26 Hantgan RR, Hindriks G, Taylor RG, Sixma JJ, de Groot PG, Glycoprotein lb. von Willebrand factor, and glycoprotein IIb:IIIa are involved in platelet adhesion to fibrin in flowing whole blood. Blood 1990; 76: 345-353
  • 27 Hantgan RR, Endenburg SC, Cavero I, Marguerie G, Uzan A, Sixma JJ, De Groot PG. Inhibition of platelet adhesion to fibrin(ogen) in flowing whole blood by Arg-Gly-Asp and fibrinogen gamma-chain carboxy terminal peptides. Thromb Haemost 1992; 68: 694-700
  • 28 Turitto VR, Muggli R, Baumgartner HR. Physical factors influencing platelet deposition on subendothelium: importance of blood shear rate. Ann NY Acad Sci 1977; 283: 284-292
  • 29 Erikssen G, Thaulow E, Sandvik L, Stormorken H, Erikssen HaematocritJ. a predictor of cardiovascular mortality?. J Intern Med 1993; 234: 493-499
  • 30 van Breugel HHFI, de Groot PG, Heethaar RM, Sixma JJ. Role of plasma viscosity in platelet adhesion. Blood 1992; 80: 953-959
  • 31 Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol (Basel) 1957; 17: 237-246
  • 32 Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 4832: 927-929
  • 33 Dabros T, van de Ven TGM. A direct method for studying particle deposition onto solid surfaces. Colloid Polym Sci 1983; 261: 694-707
  • 34 Tippe A, Reininger A, Reininger C, Rieß R. In vitro adhesion and aggregation of human platelets. A quantitative evaluation of stagnation point flow experiments Thromb Res 1992; 67: 407-418
  • 35 Reininger CB, Reininger AJ, Hörmann A, Steckmeier B, Schweiberer L. Quantitative analysis of platelet function using stagnation point flow aggre- gometry - First clinical results. Int Angiol 1992; 11: 247-255
  • 36 Heinzmann U, Höfler H. Detection of epidermal growth factor receptor by scanning electron microscopy. Histochemistry 1994; 101: 127-134
  • 37 Park K, Mao FW, Park H. Morphological characterization of surface- induced platelet activation. Biomaterials 1990; 11: 24-31
  • 38 Wurzinger LJ. Histophysiology of the circulating platelet. In: Advances in Anatomy, Embryology and Cell Biology. Beck F, Hild W, Kriz W, Pauly JE, Schiebler TH. ed Springer-Verlag; Berlin: 1990. vol 120 pp 27-40
  • 39 Park K, Park H. Application of video-enhanced interference reflection microscopy to the study of platelet-surface interaction. Scanning Microscopy 1989; Suppl 3: 137-146
  • 40 Aarts PAMM, Heethaar RM, Sixma JJ. Red blood cell deformability influences platelets-vessel wall interaction in flowing blood. Blood 1984; 64: 1228-1233
  • 41 Slack SM, Cui YW, Turitto VT. The Effects of Flow on Blood Coagulation and Thrombosis. Thromb Haemost 1993; 70: 129-134
  • 42 Beck EA. Congenital Disorders of Fibrin Formation and Stabilization. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice Colman RW, Hirsh J, Marder VJ, Salzman EW. eds J. B. Lippincott Company; Philadelphia, PA: 1982. pp 185-209
  • 43 Peerschke El, Zucker MB, Egan JJ, Johnson MM. Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 1980; 55: 841-847
  • 44 Coller BS. Von Willebrand Disease. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice Colman RW, Hirsh J, Marder VJ, Salzman EW. eds 2. edition J. B. Lippincott Company; Philadelphia, PA: 1987. pp 60-96
  • 45 Weiss HJ, Hoffmann T, Yoshioka A, Ruggeri ZM. Evidence that the arg1744gly1745asp1746sequence in the GPIIb-IIIa-binding domain of von Willebrand factor is involved in platelet adhesion and thrombus formation on subendothelium. J Lab Clin Med 1993; 122: 324-332
  • 46 Brash JL, Scott CF, ten Hove P, Wojciechowski P, Colman RW. Mechanism of transient adsorption of fibrinogen from plasma to solid surfaces. Role of the contact and fibrinolytic systems Blood 1988; 71: 932-939
  • 47 Brash JL, ten Hove P. Transient adsorption of fibrinogen on foreign surfaces: Similar behavior in plasma and whole blood. J Biomed Mater Res 1989; 23: 157-169
  • 48 Wojciechowski P, Brash JL. The vroman effect in tube geometry. The influence of flow on protein adsorption measurements J Biomater Sci Polymer Edn 1991; 2: 203-216
  • 49 Pankowsky DA, Ziats NP, Topham NS, Ratnoff OD, Anderson JM. Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. J Vase Surg 1990; 11: 599-606
  • 50 Poot A, Beugeling T, Cazenave JP, Bantjes A, van Aken WG. Platelet deposition in a capillary perfusion model - quantitative and morphological aspects. Biomaterials 1988; 9: 126-132
  • 51 Coller BS, Kutok JL, Scudder LE, Galanakis DK, West SM, Rudomen GS, Springer KT. Studies of activated GP Ilb/IIIa receptors on the luminal surface of adherent platelets - paradoxical loss of luminal receptors when platelets adhere to high density fibrinogen. J Clin Invest 1993; 92: 2796-2806
  • 52 Stanford MF, Munoz PC, Vroman L. Platelets adhere where flow has left fibrinogen on glass. Ann NY Acad Sci 1983; 416: 504-512